微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Python numpy 模块-round() 实例源码

Python numpy 模块,round() 实例源码

我们从Python开源项目中,提取了以下50代码示例,用于说明如何使用numpy.round()

项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def resample(image, scan, new_spacing=[1,1,1]):
    # Determine current pixel spacing
    spacing = map(float, ([scan[0].SliceThickness] + scan[0].PixelSpacing))
    spacing = np.array(list(spacing))

    #scan[2].SliceThickness


    resize_factor = spacing / new_spacing
    new_real_shape = image.shape * resize_factor
    new_shape = np.round(new_real_shape)
    real_resize_factor = new_shape / image.shape
    new_spacing = spacing / real_resize_factor

    image = scipy.ndimage.interpolation.zoom(image, real_resize_factor, mode='nearest')  ### early orig modified 

    return image, new_spacing
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def resample(image, ([scan[0].SliceThickness] + scan[0].PixelSpacing))
    spacing = np.array(list(spacing))

    resize_factor = spacing / new_spacing
    new_real_shape = image.shape * resize_factor
    new_shape = np.round(new_real_shape)
    real_resize_factor = new_shape / image.shape
    new_spacing = spacing / real_resize_factor

    #image = scipy.ndimage.interpolation.zoom(image,real_resize_factor)   # nor mode= "wrap"/xxx,nor cval=-1024 can ensure that the min and max values are unchanged .... # cval added
    image = scipy.ndimage.interpolation.zoom(image, mode='nearest')  ### early orig modified 
    #image = scipy.ndimage.zoom(image,real_resize_factor,order=1)    # order=1 bilinear,preserves the min and max of the image -- pronbably better for us (also faster than spkine/order=2)

    #image = scipy.ndimage.zoom(image,mode='nearest',preserves the min and max of the image -- pronbably better for us (also faster than spkine/order=2)

    return image, new_spacing
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def handle_data(self, data):
        if self.target_shares == 0:
            assert 0 not in self.portfolio.positions
            self.order(self.sid(0), 10)
            self.target_shares = 10
            return
        else:
            print(self.portfolio)
            assert self.portfolio.positions[0]['amount'] == \
                self.target_shares, "Orders not filled immediately."
            assert self.portfolio.positions[0]['last_sale_price'] == \
                data[0].price, "Orders not filled at current price."

        self.order_target_value(self.sid(0), 20)
        self.target_shares = np.round(20 / data[0].price)

        if isinstance(self.sid(0), Equity):
            self.target_shares = np.round(20 / data[0].price)
        if isinstance(self.sid(0), Future):
            self.target_shares = np.round(
                20 / (data[0].price * self.sid(0).multiplier))
项目:cloud-volume    作者:seung-lab    | 项目源码 | 文件源码
def round_to_chunk_size(self, chunk_size, offset=Vec(0,0, dtype=int)):
    """
    Align a potentially non-axis aligned bBox to the grid by rounding it
    to the nearest grid lines.

    required:
      chunk_size: arraylike (x,y,z),the size of chunks in the 
                    dataset e.g. (64,64,64)
    Optional:
      offset: arraylike (x,the starting coordinate of the dataset
    """
    chunk_size = np.array(chunk_size, dtype=np.float32)
    result = self.clone()
    result = result - offset
    result.minpt = np.round(result.minpt / chunk_size) * chunk_size
    result.maxpt = np.round(result.maxpt / chunk_size) * chunk_size
    return result + offset
项目:HandDetection    作者:YunqiuXu    | 项目源码 | 文件源码
def draw_bounding_Boxes(image, gt_Boxes, im_info):
  num_Boxes = gt_Boxes.shape[0]
  gt_Boxes_new = gt_Boxes.copy()
  gt_Boxes_new[:,:4] = np.round(gt_Boxes_new[:,:4].copy() / im_info[2])
  disp_image = Image.fromarray(np.uint8(image[0]))

  for i in xrange(num_Boxes):
    this_class = int(gt_Boxes_new[i, 4])
    disp_image = _draw_single_Box(disp_image, 
                                gt_Boxes_new[i, 0],
                                gt_Boxes_new[i, 1], 2], 3],
                                'N%02d-C%02d' % (i, this_class),
                                FONT,
                                color=STANDARD_COLORS[this_class % NUM_COLORS])

  image[0, :] = np.array(disp_image)
  return image
项目:pdnn    作者:petered    | 项目源码 | 文件源码
def quantized_forward_pass_cost_and_output(inputs, weights, scales, biases=None, quantization_method='round',
        hidden_activations='relu', output_activation = 'relu', computation_calc='adds', seed=None):
    """
    Do a forward pass of a discretized network,and return the (pseudo) computational cost and final output.

    :param inputs: A (n_samples,n_dims) array of inputs
    :param weights: A list of (n_dim_in,n_dim_out) arrays of weights
    :param scales: A list of (w[0].shape[0],w[1].shape[0],...) scales to multiply/divide by before/after the quantization
    :param quantization_method: The method of quantization/discretization: 'round','uniform',None,....
    :param seed: A random seed or number generator
    :return: n_ops,output_activation: Where:
        n_ops is the (scalar) number of commputations required in the forward pass (only striclty true if scale is 'round',.. otherwise it's some kind of surrogate.
        output_activation: A (n_samples,n_dims) array representing the output activations.
    """
    activations = scaled_quantized_forward_pass(inputs= inputs, weights=weights, biases=biases, scales=scales,
        hidden_activations=hidden_activations, output_activations=output_activation, quantization_method=quantization_method, rng=seed)
    spike_activations = activations[1::3]
    n_ops = sparse_nn_flop_count(spike_activations, [w.shape[1] for w in weights], mode=computation_calc) if quantization_method is not None else None
    return n_ops, activations[-1]
项目:lung-cancer-detector    作者:YichenGong    | 项目源码 | 文件源码
def resample(patient,1]):
    scan = get_scan(patient)
    image = get_3D_data(patient)

    # Determine current pixel spacing
    spacing = np.array([scan[0].SliceThickness] + scan[0].PixelSpacing, dtype=np.float32)

    resize_factor = spacing / new_spacing
    new_real_shape = image.shape * resize_factor
    new_shape = np.round(new_real_shape)
    real_resize_factor = new_shape / image.shape
    new_spacing = spacing / real_resize_factor

    image = nd.interpolation.zoom(image, mode='nearest')

    return image

# For the sake of testing the network,we'll be using the sample dataset
# For this,we'll use the maximum size of the image
# and PAD any image with -1000 values which is smaller than that

#PS: only the first dimension is different in sample dataset
#which is not the case in actual dataset
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def did_succeed( output_dict, cond_dict ):
    '''
    Used in rejection sampling:
    for each row,determine if cond is satisfied
    for every cond in cond_dict

    success is hardcoded as round(label) being exactly equal
    to the integer in cond_dict
    '''

    #deFinition success:
    def is_win(key):
        #cond=np.squeeze(cond_dict[key])
        cond=np.squeeze(cond_dict[key])
        val=np.squeeze(output_dict[key])
        condition= np.round(val)==cond
        return condition

    scoreboard=[is_win(key) for key in cond_dict]
    #print('scoreboard',scoreboard)
    all_victories_bool=np.logical_and.reduce(scoreboard)
    return all_victories_bool.flatten()
项目:nelder_mead    作者:owruby    | 项目源码 | 文件源码
def func_impl(self, x):
        objval, invalid = None, False
        for i, t in enumerate(x):
            if t < self.p_min[i] or t > self.p_max[i]:
                objval = float("inf")
                invalid = True
        if not invalid:
            x = [int(np.round(x_t)) if p_t is "integer" else x_t for p_t, x_t in zip(self.p_types, x)]
            objval = self._coef * self.func(x)

        print("{:5d} | {} | {:>15.5f}".format(
            self.n_eval,
            " | ".join(["{:>15.5f}".format(t) for t in x]),
            self._coef * objval
        ))

        self.n_eval += 1
        return objval
项目:mimic3-benchmarks    作者:YerevaNN    | 项目源码 | 文件源码
def clean_height(df):
    v = df.VALUE.astype(float)
    idx = df.VALUEUOM.fillna('').apply(lambda s: 'in' in s.lower()) | df.MIMIC_LABEL.apply(lambda s: 'in' in s.lower())
    v.ix[idx] = np.round(v[idx] * 2.54)
    return v

# ETCO2: haven't found yet
# Urine output: ambiguous units (raw ccs,ccs/kg/hr,24-hr,etc.)
# Tidal volume: tried to substitute for ETCO2 but units are ambiguous
# Glascow coma scale eye opening
# Glascow coma scale motor response
# Glascow coma scale total
# Glascow coma scale verbal response
# Heart Rate
# Respiratory rate
# Mean blood pressure
项目:ConfigSpace    作者:automl    | 项目源码 | 文件源码
def test_sample_normalFloatHyperparameter(self):
        hp = normalFloatHyperparameter("nfhp", 0, 1)

        def actual_test():
            rs = np.random.RandomState(1)
            counts_per_bin = [0 for i in range(11)]
            for i in range(100000):
                value = hp.sample(rs)
                index = min(max(int((round(value + 0.5)) + 5), 0), 9)
                counts_per_bin[index] += 1

            self.assertEqual([0, 4, 138, 2113, 13394, 34104, 34282, 13683,
                              2136, 146, counts_per_bin)

            return counts_per_bin

        self.assertEqual(actual_test(), actual_test())
项目:risk-slim    作者:ustunb    | 项目源码 | 文件源码
def round_solution_pool(pool, constraints):

    pool.distinct().sort()
    P = pool.P
    L0_reg_ind = np.isnan(constraints['coef_set'].C_0j)
    L0_max = constraints['L0_max']
    rounded_pool = SolutionPool(P)

    for solution in pool.solutions:
        # sort from largest to smallest coefficients
        feature_order = np.argsort([-abs(x) for x in solution])
        rounded_solution = np.zeros(shape=(1, P))
        l0_norm_count = 0
        for k in range(0, P):
            j = feature_order[k]
            if not L0_reg_ind[j]:
                rounded_solution[0, j] = np.round(solution[j], 0)
            elif l0_norm_count < L0_max:
                rounded_solution[0, 0)
                l0_norm_count += L0_reg_ind[j]

        rounded_pool.add(objvals=np.nan, solutions=rounded_solution)

    rounded_pool.distinct().sort()
    return rounded_pool
项目:mx-rfcn    作者:giorking    | 项目源码 | 文件源码
def resize(im, target_size, max_size):
    """
    only resize input image to target size and return scale
    :param im: BGR image input by opencv
    :param target_size: one dimensional size (the short side)
    :param max_size: one dimensional max size (the long side)
    :return:
    """
    im_shape = im.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    # prevent bigger axis from being more than max_size:
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
    return im, im_scale
项目:mx-rfcn    作者:giorking    | 项目源码 | 文件源码
def resize(im, max_size):
    """
    only resize input image to target size and return scale
    :param im: BGR image input by opencv
    :param target_size: one dimensional size (the short side)
    :param max_size: one dimensional max size (the long side)
    :return:
    """
    im_shape = im.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im, im_scale
项目:CombinX    作者:SimCMinMax    | 项目源码 | 文件源码
def generateTickText(tickValue, ratio, baseline=False):
    multStep = 1000.
    multipliers = [
        dict(suffix='', mult=pow(multStep, 0)),
        dict(suffix='k', 1)),
        dict(suffix='M', 2)),
        dict(suffix='G', 3)),
    ]
    multiplier = multipliers[0]
    for m in multipliers:
        if np.round(tickValue / m['mult'], decimals=2) >= 1:
            multiplier = m
    baseText = float('%.3g' % np.round(tickValue / multiplier['mult'], decimals=2))
    baseText = int(baseText) if int(baseText) == baseText else baseText
    suffix = multiplier['suffix']
    percent = float('%.1f' % (100 * ratio))
    percent = int(percent) if percent == int(percent) else percent
    return '%s%s [%s%%]' % (baseText, suffix, percent)
项目:CombinX    作者:SimCMinMax    | 项目源码 | 文件源码
def generateTickText(tickValue, baseline = False):
    multStep = 1000.
    multipliers = [
        dict(suffix='',
    ]
    multiplier = multipliers[0]
    for m in multipliers:
        if np.round(tickValue / m['mult']) >= 1:
            multiplier = m
    baseText = float('%.3g' % np.round(tickValue / multiplier['mult']))
    baseText = int(baseText) if int(baseText) == baseText else baseText
    suffix = multiplier['suffix']
    percent = float('%.1f' % (100 * ratio))
    percent = int(percent) if percent == int(percent) else percent
    return '%s%s [%s%%]' % (baseText, percent)
项目:AerialCrackDetection_Keras    作者:TTMRonald    | 项目源码 | 文件源码
def apply_regr(x, y, w, h, tx, ty, tw, th):
    try:
        cx = x + w/2.
        cy = y + h/2.
        cx1 = tx * w + cx
        cy1 = ty * h + cy
        w1 = math.exp(tw) * w
        h1 = math.exp(th) * h
        x1 = cx1 - w1/2.
        y1 = cy1 - h1/2.
        x1 = int(round(x1))
        y1 = int(round(y1))
        w1 = int(round(w1))
        h1 = int(round(h1))

        return x1, y1, w1, h1

    except ValueError:
        return x, h
    except OverflowError:
        return x, h
    except Exception as e:
        print(e)
        return x, h
项目:fast-rcnn-distillation    作者:xiaolonw    | 项目源码 | 文件源码
def prep_im_for_blob(im, pixel_means, max_size):
    """Mean subtract and scale an image for use in a blob."""
    im = im.astype(np.float32, copy=False)
    im -= pixel_means
    im = im / 127.5
    im_shape = im.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    # Prevent the biggest axis from being more than MAX_SIZE
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im,
                    interpolation=cv2.INTER_LINEAR)

    return im, im_scale
项目:watermark    作者:lishuaijuly    | 项目源码 | 文件源码
def _gene_embed_space(self,vec):
        shape = vec.shape
        vec = vec.flatten()
        combo_neg_idx = np.array([1 if vec[i]<0  else 0 for i in range(len(vec))])

        vec_pos = np.abs(vec)
        int_part = np.floor(vec_pos)
        frac_part = np.round(vec_pos - int_part,2)

        bi_int_part=[] #?????????????signature???????
        for i in range(len(int_part)):
            bi=list(bin(int(int_part[i]))[2:])
            bie = [0] * (16 - len(bi))
            bie.extend(bi)
            bi_int_part.append(np.array(bie,dtype=np.uint16))
        bi_int_part = np.array(bi_int_part)

        sig = []
        for i in range(len(bi_int_part)):
            sig.append(bi_int_part[i][10])
        sig = np.array(sig).reshape(shape)
        return np.array(bi_int_part),frac_part.reshape(shape),combo_neg_idx.reshape(shape),sig
项目:watermark    作者:lishuaijuly    | 项目源码 | 文件源码
def _gene_embed_space(self,sig
项目:circletracking    作者:caspervdw    | 项目源码 | 文件源码
def crop_pad(image, corner, shape):
    ndim = len(corner)
    corner = [int(round(c)) for c in corner]
    shape = [int(round(s)) for s in shape]
    original = image.shape[-ndim:]
    zipped = zip(corner, shape, original)

    if np.any(c < 0 or c + s > o for (c, s, o) in zipped):
        no_padding = [(0, 0)] * (image.ndim - ndim)
        padding = [(max(-c, max(c + s - o, 0)) for (c, o) in zipped]
        corner = [c + max(-c, 0) for c in corner]
        image_temp = np.pad(image, no_padding + padding, mode=str('constant'))
    else:
        image_temp = image

    no_crop = [slice(o+1) for o in image.shape[:-ndim]]
    crop = [slice(c, c+s) for (c, s) in zip(corner, shape)]
    return image_temp[no_crop + crop]
项目:keras-frcnn    作者:yhenon    | 项目源码 | 文件源码
def apply_regr(x, h
项目:ndparse    作者:neurodata    | 项目源码 | 文件源码
def compute_centroids(object_matrix, preserve_ids=False, round_val=False):

    # if ids=true,then write a matrix equal to size of maximum
    # value,else,order in object label order

    # if round = true,round centroid coordinates to nearest integer
    # when rounding,Todo: make sure we don't leave the volume

    import skimage.measure as measure

    centroids = []
    # Threshold data
    rp = measure.regionprops(object_matrix)

    for r in rp:
        if round_val > 0:
            centroids.append(np.round(r.Centroid, round_val))
        else:
            centroids.append(r.Centroid)

    return centroids
项目:ndparse    作者:neurodata    | 项目源码 | 文件源码
def pareto_front(vals1, vals2, round_val=3):

    # butter and guns pareto front.  Removes points not on
    # the pareto frontier

    # round very similar vals
    vals1 = round(vals1, round_val)
    vals2 = round(vals2, round_val)

    v1_out = []
    v2_out = []
    idx_out = []
    for idx in range(0, len(vals1)):

        is_better = np.find(vals1 >= vals1[idx] and vals2 >= vals2[idx])
        if is_better is None:
            v1_out.append(vals1[idx])
            v2_out.append(vals2[idx])
            idx_out.append(idx)

    return v1_out, v2_out, idx_out
项目:ndparse    作者:neurodata    | 项目源码 | 文件源码
def _downsample_mask(X, pct):
    """ Create a boolean mask indicating which subset of X should be
    evaluated.
    """
    if pct < 1.0:
        Mask = np.zeros(X.shape, dtype=np.bool)
        m = X.shape[-2]
        n = X.shape[-1]
        nToEval = np.round(pct*m*n).astype(np.int32)
        idx = sobol(2, nToEval ,0)
        idx[0] = np.floor(m*idx[0])
        idx[1] = np.floor(n*idx[1])
        idx = idx.astype(np.int32)
        Mask[:,:,idx[0], idx[1]] = True
    else:
        Mask = np.ones(X.shape, dtype=np.bool)

    return Mask
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def prepare_oae_PU4(kNown_transisitons):
    print("Learn from pre + action label",
          "*** INCOMPATIBLE MODEL! ***",
          sep="\n")
    N = kNown_transisitons.shape[1] // 2

    y = generate_oae_action(kNown_transisitons)

    ind = np.where(np.squeeze(combined(y[:,N:])) > 0.5)[0]

    y = y[ind]

    actions = oae.encode_action(kNown_transisitons, batch_size=1000).round()
    positive = np.concatenate((kNown_transisitons[:,:N], np.squeeze(actions)), axis=1)
    actions = oae.encode_action(y, batch_size=1000).round()
    negative = np.concatenate((y[:, axis=1)
    # random.shuffle(negative)
    # negative = negative[:len(positive)]
    # normalize
    return (default_networks['PUdiscriminator'], *prepare_binary_classification_data(positive, negative))
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def prepare_oae_PU5(kNown_transisitons):
    print("Learn from pre + suc + action label", batch_size=1000).round()
    positive = np.concatenate((kNown_transisitons, batch_size=1000).round()
    negative = np.concatenate((y, negative))
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def puzzle_plot(p):
    p.setup()
    def name(template):
        return template.format(p.__name__)
    from itertools import islice
    configs = list(islice(p.generate_configs(9), 1000)) # be careful,islice is not immutable!!!
    import numpy.random as random
    random.shuffle(configs)
    configs = configs[:10]
    puzzles = p.generate(configs, 3, 3)
    print(puzzles.shape, "mean", puzzles.mean(), "stdev", np.std(puzzles))
    plot_image(puzzles[-1], name("{}.png"))
    plot_image(np.clip(puzzles[-1]+np.random.normal(0,0.1,puzzles[-1].shape),1),name("{}+noise.png"))
    plot_image(np.round(np.clip(puzzles[-1]+np.random.normal(0,1)),name("{}+noise+round.png"))
    plot_grid(puzzles, name("{}s.png"))
    _transitions = p.transitions(3,3,configs=configs)
    print(_transitions.shape)
    transitions_for_show = \
        np.einsum('ba...->ab...',_transitions) \
          .reshape((-1,)+_transitions.shape[2:])
    print(transitions_for_show.shape)
    plot_grid(transitions_for_show, name("{}_transitions.png"))
项目:Face-Recognition    作者:irmowan    | 项目源码 | 文件源码
def point_trans(ori_point, angle, ori_shape, new_shape):
    """ Transfrom the point from original to rotated image.
    Args:
        ori_point: Point coordinates in original image.
        angle: Rotate angle.
        ori_shape: The shape of original image.
        new_shape: The shape of rotated image.

    Returns:
        Numpy array of new point coordinates in rotated image.
    """
    dx = ori_point[0] - ori_shape[1] / 2.0
    dy = ori_point[1] - ori_shape[0] / 2.0

    t_x = round(dx * math.cos(angle) - dy * math.sin(angle) + new_shape[1] / 2.0)
    t_y = round(dx * math.sin(angle) + dy * math.cos(angle) + new_shape[0] / 2.0)
    return np.array((int(t_x), int(t_y)))
项目:tianchi_power    作者:lvniqi    | 项目源码 | 文件源码
def predict_tf_once(day,start_date = '2016-10-1'):
    all_dataset = get_dataset(day)
    all_dataset = map(lambda x:x.ix[start_date:start_date],all_dataset)
    y_p_features = map(lambda user_id:tf_percent_model.resample_x_y_(all_dataset,user_id)[0].reshape(-1),get_full_user_ids())
    y_p_features_df = pd.DataFrame(y_p_features,index = get_full_user_ids())
    percent = pd.DataFrame.from_csv('./features/tensorflow_model/percent_model/%d.csv'%day)
    #percent = pd.DataFrame.from_csv('./features/tensorflow_model/percent_model/%d.csv'%2)
    #%%
    percent = percent[map(lambda x:'percent#%d'%x,range(_feature_length))]
    t = pd.DataFrame(index = percent.index)
    t[pd.Timestamp(start_date)+pd.timedelta('%dd'%(day-1))] = (np.array(y_p_features_df)*percent).sum(axis=1)
    t = t.T
    t.to_csv('./result/predict_part/%d.csv'%day)
    real = int(np.round((np.array(y_p_features_df)*percent).sum().sum()))
    print (day,real)
    return (day,real)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_minmax_funcs_with_output(self):
        # Tests the min/max functions with explicit outputs
        mask = np.random.rand(12).round()
        xm = array(np.random.uniform(0, 10, 12), mask=mask)
        xm.shape = (3, 4)
        for funcname in ('min', 'max'):
            # Initialize
            npfunc = getattr(np, funcname)
            mafunc = getattr(numpy.ma.core, funcname)
            # Use the np version
            nout = np.empty((4,), dtype=int)
            try:
                result = npfunc(xm, axis=0, out=nout)
            except MaskError:
                pass
            nout = np.empty((4, dtype=float)
            result = npfunc(xm, out=nout)
            self.assertTrue(result is nout)
            # Use the ma version
            nout.fill(-999)
            result = mafunc(xm, out=nout)
            self.assertTrue(result is nout)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_round(self):
        a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890],
                  mask=[0, 1, 0])
        assert_equal(a.round(), [1., 2., 3., 5., 6.])
        assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7])
        assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679])
        b = empty_like(a)
        a.round(out=b)
        assert_equal(b, 6.])

        x = array([1., 4., 5.])
        c = array([1, 0])
        x[2] = masked
        z = where(c, x, -x)
        assert_equal(z, 0., -4., -5])
        c[0] = masked
        z = where(c, -5])
        assert_(z[0] is masked)
        assert_(z[1] is not masked)
        assert_(z[2] is masked)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def test_round_with_scalar(self):
        # Testing round with scalar/zero dimension input
        # GH issue 2244
        a = array(1.1, mask=[False])
        assert_equal(a.round(), 1)

        a = array(1.1, mask=[True])
        assert_(a.round() is masked)

        a = array(1.1, mask=[False])
        output = np.empty(1, dtype=float)
        output.fill(-9999)
        a.round(out=output)
        assert_equal(output, mask=[False])
        output = array(-9999., mask=[True])
        a.round(out=output)
        assert_equal(output[()], mask=[True])
        output = array(-9999., mask=[False])
        a.round(out=output)
        assert_(output[()] is masked)
项目:desert-mirage    作者:valentour    | 项目源码 | 文件源码
def dec_round(num, dprec=4, rnd='down', rto_zero=False):
    """
    Round up/down numeric ``num`` at specified decimal ``dprec``.

    Parameters
    ----------
    num: float
    dprec: int
        Decimal position for truncation.
    rnd: str (default: 'down')
        Set as 'up' or 'down' to return a rounded-up or rounded-down value.
    rto_zero: bool (default: False)
        Use a *round-towards-zero* method,e.g.,``floor(-3.5) == -3``.

    Returns
    ----------
    float (default: rounded-up)
    """
    dprec = 10**dprec
    if rnd == 'up' or (rnd == 'down' and rto_zero and num < 0.):
        return np.ceil(num*dprec)/dprec
    elif rnd == 'down' or (rnd == 'up' and rto_zero and num < 0.):
        return np.floor(num*dprec)/dprec
    return np.round(num, dprec)
项目:HyperGAN    作者:255BITS    | 项目源码 | 文件源码
def sample_output(self, val):
        vocabulary = self.get_vocabulary()
        if self.one_hot:
            vals = [ np.argmax(r) for r in val ]
            ox_val = [vocabulary[obj] for obj in list(vals)]
            string = "".join(ox_val)
            return string
        else:
            val = np.reshape(val, [-1])
            val *= len(vocabulary)/2.0
            val += len(vocabulary)/2.0
            val = np.round(val)

            val = np.maximum(0, val)
            val = np.minimum(len(vocabulary)-1, val)

            ox_val = [self.get_character(obj) for obj in list(val)]
            string = "".join(ox_val)
            return string
项目:iGAN    作者:junyanz    | 项目源码 | 文件源码
def __init__(self, opt_engine, topK=16, grid_size=None, nps=320, model_name='tmp'):
        QWidget.__init__(self)
        self.topK = topK
        if grid_size is None:
            self.n_grid = int(np.ceil(np.sqrt(self.topK)))
            self.grid_size = (self.n_grid, self.n_grid) # (width,height)
        else:
            self.grid_size = grid_size
        self.select_id = 0
        self.ims = None
        self.vis_results = None
        self.width = int(np.round(nps/ (4 * float(self.grid_size[1])))) * 4
        self.winWidth = self.width * self.grid_size[0]
        self.winHeight = self.width * self.grid_size[1]

        self.setFixedSize(self.winWidth, self.winHeight)
        self.opt_engine = opt_engine
        self.frame_id = -1
        self.sr = save_result.SaveResult(model_name=model_name)
项目:nimo    作者:wolfram2012    | 项目源码 | 文件源码
def sresample(src, outshape):
    """ Simple 3d array resampling

    Inputs:
      src -- a ndimensional array (dim>2)
      outshape -- fixed output shape for the first 2 dimensions

    Outputs:
       hout -- resulting n-dimensional array

    """

    inh, inw = src.shape[:2]
    outh, outw = outshape
    hslice = (np.arange(outh) * (inh-1.)/(outh-1.)).round().astype(int)
    wslice = (np.arange(outw) * (inw-1.)/(outw-1.)).round().astype(int)
    hout = src[hslice, :][:, wslice]
    return hout.copy()
项目:WRF-Projects    作者:aerler    | 项目源码 | 文件源码
def stationInfo(stnds, varname, name, titlestr=None, alttitle=None, lflatten=False, lmon=False,):
  ''' helper to generate an axes title with station info '''
  if stnds.hasAxis('station'): nstn = len(stnds.axes['station']) # number of stations        
  else: nstn = 1 # single station
  if stnds.name[:3].lower() == 'obs' and varname in stnds:
      ec = stnds[varname] # some variables are not present everywhere
      if ec.hasAxis('time') and ec.time.units[:3].lower() == 'mon': units = 'mon.'
      elif ec.hasAxis('year') and ec.year.units.lower() == 'year': units = 'yrs.'
      else: units = 'mon.' if lmon else 'yrs.'
      mask = ec.data_array.mask if isinstance(ec.data_array,np.ma.MaskedArray) else np.isnan(ec.data_array) 
      if lflatten: rec_len = (ec.data_array.size - mask.sum()) # valid years in obs/EC
      else: rec_len = int(np.round(ec.data_array.shape[-1] - mask.sum(axis=-1).mean())) # valid years in obs/EC
      if titlestr: axtitle = titlestr.format(name,nstn,rec_len) # axes label
      else: axtitle = "{:s} (#{:d},{:d} {:s})".format(name,rec_len,units) # axes label
  else:
      if alttitle: axtitle = alttitle.format(name,nstn) # axes label
      elif titlestr: axtitle = titlestr.format(name,nstn) # axes label
      else: axtitle = "{:s} (#{:d},WRF only)".format(name,nstn) # axes label
  return axtitle

# function to compute some statistics and print them
项目:speech_feature_extractor    作者:ZhihaoDU    | 项目源码 | 文件源码
def get_fft_mel_mat(nfft, sr=8000, nfilts=None, width=1.0, minfrq=20, maxfrq=None, constamp=0):
    if nfilts is None:
        nfilts = nfft
    if maxfrq is None:
        maxfrq = sr // 2
    wts = np.zeros((nfilts, nfft//2+1))
    fftfrqs = np.arange(0, nfft//2+1) / (1. * nfft) * (sr)
    minmel = hz2mel(minfrq)
    maxmel = hz2mel(maxfrq)
    binfrqs = mel2hz(minmel + np.arange(0, nfilts+2) / (nfilts+1.) * (maxmel - minmel))
    # binbin = np.round(binfrqs / maxfrq * nfft)
    for i in range(nfilts):
        fs = binfrqs[[i+0, i+1, i+2]]
        fs = fs[1] + width * (fs - fs[1])
        loslope = (fftfrqs - fs[0]) / (fs[1] - fs[0])
        hislope = (fs[2] - fftfrqs) / (fs[2] - fs[1])
        wts[i, :] = np.maximum(0, np.minimum(loslope, hislope))
    return wts
项目:speech_feature_extractor    作者:ZhihaoDU    | 项目源码 | 文件源码
def get_fft_mel_mat(nfft, hislope))
    return wts
项目:SlidingWindowVideoTDA    作者:ctralie    | 项目源码 | 文件源码
def CSMToBinary(D, Kappa):
    """
    Turn a cross-similarity matrix into a binary cross-simlarity matrix
    If Kappa = 0,take all neighbors
    If Kappa < 1 it is the fraction of mutual neighbors to consider
    Otherwise Kappa is the number of mutual neighbors to consider
    """
    N = D.shape[0]
    M = D.shape[1]
    if Kappa == 0:
        return np.ones((N, M))
    elif Kappa < 1:
        NNeighbs = int(np.round(Kappa*M))
    else:
        NNeighbs = Kappa
    J = np.argpartition(D, NNeighbs, 1)[:, 0:NNeighbs]
    I = np.tile(np.arange(N)[:, None], (1, NNeighbs))
    V = np.ones(I.size)
    [I, J] = [I.flatten(), J.flatten()]
    ret = sparse.coo_matrix((V, (I, J)), shape=(N, M))
    return ret.toarray()
项目:attract-repel    作者:nmrksic    | 项目源码 | 文件源码
def print_word_vectors(word_vectors, write_path):
    """
    This function prints the collection of word vectors to file,in a plain textual format. 
    """

    f_write = codecs.open(write_path, 'w', 'utf-8')

    for key in word_vectors:
        print >>f_write, key, " ".join(map(unicode, numpy.round(word_vectors[key], decimals=6))) 

    print "Printed", len(word_vectors), "word vectors to:", write_path
项目:pylspm    作者:lseman    | 项目源码 | 文件源码
def trataGroups(objeto):

    current = list(filter(None.__ne__, objeto))
    current = np.sort(current, axis=0)

    for i in range(len(current[0])):
        current_ = [j[i] for j in current]
        mean_ = np.round(np.mean(current_, axis=0), 4)
        deviation_ = np.round(np.std(current_, ddof=1), 4)

    return [mean_, deviation_]
项目:pylspm    作者:lseman    | 项目源码 | 文件源码
def trataGroups(objeto):

    current = list(filter(None.__ne__, objeto))

    mean_ = np.round(np.mean(current, 4)
    deviation_ = np.round(np.std(current, 4)
    fivecent = np.round(np.percentile(current, 5.0, 4)

    # confidence intervals
    lowci = np.round(np.percentile(current, 2.5, 4)
    highci = np.round(np.percentile(current, 97.5, deviation_, fivecent, current, lowci, highci]
项目:pylspm    作者:lseman    | 项目源码 | 文件源码
def PA(samples, variables):
    datasets = 5000
    eig_vals = []

    for i in range(datasets):
        data = np.random.standard_normal((variables, samples))
        cor_ = np.corrcoef(data)
        eig_vals.append(np.sort(np.linalg.eig(cor_)[0])[::-1])


    quantile = (np.round(np.percentile(eig_vals, 95.0, 4))
    mean_ = (np.round(np.mean(eig_vals, 4))
    return quantile
项目:pyfds    作者:emtpb    | 项目源码 | 文件源码
def get_line_region(self, position, name=''):
        """Creates a line region at the given position (start_x,start_y,end_x,end_y),
        inclusive.

        Args:
            position: Position of the line region (start_x,end_y).
            name: Name of the region.

        Returns:
            Line region.
        """

        start_idx = self.get_index(position[:2])
        end_idx = self.get_index(position[2:])

        x_diff = start_idx % self.x.samples - end_idx % self.x.samples
        y_diff = int(start_idx / self.x.samples) - int(end_idx / self.x.samples)

        num_points = max(np.abs([x_diff, y_diff]))
        point_indices = []

        for ii in range(num_points + 1):

            x_position = start_idx % self.x.samples - np.round(ii / num_points * x_diff)
            y_position = int(start_idx / self.x.samples) - np.round(ii / num_points * y_diff)
            point_indices.append(int(x_position + self.x.samples * y_position))

        return reg.LineRegion(point_indices, name=name)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def seq(start, stop, step=1):
    n = int(round((stop - start)/float(step)))
    if n > 1:
        return([start + step*i for i in range(n+1)])
    else:
        return([])
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def draw_circles(image,cands,origin,spacing):
    #make empty matrix,which will be filled with the mask
    image_mask = np.zeros(image.shape, dtype=np.int16)

    #run over all the nodules in the lungs
    for ca in cands.values:
        #get middel x-,y-,and z-worldcoordinate of the nodule
        #radius = np.ceil(ca[4])/2     ## original:  replaced the ceil with a very minor increase of 1% ....
        radius = (ca[4])/2 + 0.51 * spacing[0]  # increasing by Circa half of distance in z direction .... (trying to capture wider region/border for learning ... and adress the rough net .

        coord_x = ca[1]
        coord_y = ca[2]
        coord_z = ca[3]
        image_coord = np.array((coord_z,coord_y,coord_x))

        #determine voxel coordinate given the worldcoordinate
        image_coord = world_2_voxel(image_coord,spacing)

        #determine the range of the nodule
        #noduleRange = seq(-radius,radius,RESIZE_SPACING[0])  # original,uniform spacing 
        noduleRange_z = seq(-radius, radius, spacing[0])
        noduleRange_y = seq(-radius, spacing[1])
        noduleRange_x = seq(-radius, spacing[2])

          #x = y = z = -2
        #create the mask
        for x in noduleRange_x:
            for y in noduleRange_y:
                for z in noduleRange_z:
                    coords = world_2_voxel(np.array((coord_z+z,coord_y+y,coord_x+x)),spacing)
                    #if (np.linalg.norm(image_coord-coords) * RESIZE_SPACING[0]) < radius:  ### original (contrained to a uniofrm RESIZE)
                    if (np.linalg.norm((image_coord-coords) * spacing)) < radius:
                        image_mask[int(np.round(coords[0])),int(np.round(coords[1])),int(np.round(coords[2]))] = int(1)


    return image_mask
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def seq(start, step=1):
    n = int(round((stop - start)/float(step)))
    if n > 1:
        return([start + step*i for i in range(n+1)])
    else:
        return([])
项目:hyperband    作者:zygmuntz    | 项目源码 | 文件源码
def train_and_eval_sklearn_classifier( clf, data ):

    x_train = data['x_train']
    y_train = data['y_train']

    x_test = data['x_test']
    y_test = data['y_test'] 

    clf.fit( x_train, y_train ) 

    try:
        p = clf.predict_proba( x_train )[:,1]   # sklearn convention
    except IndexError:
        p = clf.predict_proba( x_train )

    ll = log_loss( y_train, p )
    auc = AUC( y_train, p )
    acc = accuracy( y_train, np.round( p ))

    print "\n# training | log loss: {:.2%},AUC: {:.2%},accuracy: {:.2%}".format( ll, auc, acc )

    #

    try:
        p = clf.predict_proba( x_test )[:,1]    # sklearn convention
    except IndexError:
        p = clf.predict_proba( x_test )

    ll = log_loss( y_test, p )
    auc = AUC( y_test, p )
    acc = accuracy( y_test, np.round( p ))

    print "# testing  | log loss: {:.2%}, acc ) 

    #return { 'loss': 1 - auc,'log_loss': ll,'auc': auc }
    return { 'loss': ll, 'log_loss': ll, 'auc': auc }

###

# "clf",even though it's a regressor

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐