描述
Biologists finally invent techniques of repairing DNA that contains segments causing kinds of inherited diseases. For the sake of simplicity,a DNA is represented as a string containing characters ‘A‘,‘G‘,‘C‘ and ‘T‘. The repairing techniques are simply to change some characters to eliminate all segments causing diseases. For example,we can repair a DNA "AAGCAG" to "AGGCAC" to eliminate the initial causing disease segments "AAG","AGC" and "CAG" by changing two characters. Note that the repaired DNA can still contain only characters ‘A‘,‘C‘ and ‘T‘.
You are to help the biologists to repair a DNA by changing least number of characters.
输入
The following N lines gives N non-empty strings of length not greater than 20 containing only characters in "AGCT",which are the DNA segments causing inherited disease.
The last line of the test case is a non-empty string of length not greater than 1000 containing only characters in "AGCT",which is the DNA to be repaired.
The last test case is followed by a line containing one zeros.
number of characters which need to be changed. If it‘s impossible to repair the given DNA,print -1.
样例输入
2
AAA
AAG
AAAG
2
A
TG
TGAATG
4
A
G
C
T
AGT
0
样例输出
Case 1: 1
Case 2: 4
Case 3: -1
1 #include <iostream> 2 #include <string.h> 3 #include <algorithm> 4 #include <stack> 5 #include <string> 6 #include <math.h> 7 #include <queue> 8 #include <stdio.h> 9 #include <string.h> 10 #include <vector> 11 #include <fstream> 12 #include <set> 13 #define inf 0x3f3f3f3f 14 15 using namespace std; 16 const int maxn = 1005; 17 int n,nodecou,l; 18 char str[maxn]; 19 int gen[85],f[maxn][maxn]; 20 21 struct node { 22 int next[4]; 23 int prev; 24 bool isdanger; 25 char val; 26 node() { 27 memset(next,0,sizeof(next)); 28 prev = -1; 29 isdanger = false; 30 val = 0; 31 } 32 }tree[maxn]; 33 34 void insert() { 35 int Now = 1,l=strlen(str); 36 for (int i = 0; i < l; i++) { 37 int idx = gen[str[i]]; 38 if (tree[Now].next[idx] == 0) { 39 nodecou++; 40 tree[Now].next[idx] = nodecou; 41 tree[nodecou].val = str[i]; 42 } 43 Now = tree[Now].next[idx]; 44 if (i == l - 1) 45 tree[Now].isdanger = true; 46 } 47 } 48 49 void build() { 50 for(int i=0;i<4;i++) 51 tree[0].next[i] = 1; 52 tree[1].prev = 0; 53 queue<int>q; 54 q.push(1); 55 while (!q.empty()) { 56 int Now = q.front(); q.pop(); 57 for (int i = 0; i < 4; i++) { 58 int child = tree[Now].next[i]; 59 int prev = tree[Now].prev; 60 if (child) { 61 while (tree[prev].next[i] == NULL) 62 prev = tree[prev].prev; 63 tree[child].prev = tree[prev].next[i]; 64 if (tree[tree[child].prev].isdanger) 65 tree[child].isdanger = true; 66 q.push(child); 67 } 68 else { 69 while (!tree[prev].next[i]) 70 prev = tree[prev].prev; 71 tree[Now].next[i] = tree[prev].next[i]; 72 if (tree[child].isdanger) 73 tree[Now].next[i] = 0; 74 } 75 } 76 } 77 } 78 79 void dp(int kase) { 80 for (int i = 1; i <= l; i++) { 81 for (int j = 1; j <= nodecou; j++) 82 { 83 for (int k = 0; k < 4; k++) 84 if (tree[j].next[k] && !tree[tree[j].next[k]].isdanger) 85 f[i][tree[j].next[k]] = min(f[i - 1][j] + (gen[str[i-1]]!=k),f[i][tree[j].next[k]]); 86 } 87 } 88 int ans = inf; 89 for (int i = 1; i <= nodecou; i++) 90 ans = min(ans,f[l][i]); 91 if (ans < inf) 92 printf("Case %d: %d\n",kase,ans); 93 else 94 printf("Case %d: -1\n",kase); 95 } 96 97 void init() { 98 int kase = 0; 99 while (scanf("%d",&n)) { 100 nodecou = 1; 101 if (n == 0)return; 102 kase++; 103 memset(tree,sizeof(tree)); 104 memset(f,sizeof(f)); 105 while (n--) 106 { 107 scanf("%s",str); 108 insert(); 109 } 110 build(); 111 scanf("%s",str); 112 l = strlen(str); 113 for (int i = 0; i <= l; i++) 114 for (int j = 1; j <= nodecou; j++) 115 f[i][j] = inf; 116 f[0][1] = 0; 117 dp(kase); 118 } 119 } 120 121 int main() 122 { 123 gen[‘A‘] = 0,gen[‘G‘] = 1,gen[‘C‘] = 2,gen[‘T‘] = 3; 124 init(); 125 return 0; 126 }
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。