微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

c – boost :: multi_array视图和子数组之间有什么区别?

看完文件后,我看不出来.

我可以编写代码

typedef boost::multi_array<boost::int32_t,3> data_t;

// 3d --
typedef data_t::array_view<3>::type data_3d_view_t;

// 2d --
typedef data_3d_view_t::reference data_2d_subarray_t;
typedef data_t::array_view<2>::type data_2d_view_t;

然后我可以通过类型data_2d_subarray_t或data_2d_view_t访问一个2d切片.

他们有什么区别?
我能做什么与我不能做的另一个
有没有性能差异?

非常感谢您对我的澄清.
最好的祝福,
rodrigob.

解决方法

MultiView associated types表:

reference This is the reference type of the contained value. If NumDims == 1,then this is element&. Otherwise,this is the same type as template subarray::type.

template array_view::type This is the view type with Dims dimensions. It is returned by calling operator. It models MultiArray.

所以他们是不同的类型,首先.在这种情况下,视图表示MultiArray的一种子集合.他们实现了MultiArray概念,但它们包含的元素实际上是其他MultiArray的元素.视图允许您将新的index定义为MultiArray的元素.例如,您可以定义一个视图来反转索引,以便视图的第一个元素是MultiArray的最后一个元素.从documentation

A view lets you treat a subset of the underlying elements in a MultiArray as though it were a separate MultiArray. Since a view refers to the same underlying elements,changes made to a view’s elements will be reflected in the original MultiArray.

MultiArrays是递归定义的;尺寸为n的多阵列1可以被认为是维数n-1的多阵列数组,它们是子数组.子阵列和视图之间的关键区别在于,您可以将多阵列分割成沿着任何轴(包括主轴)的较小维度的视图,但不能沿主轴切片子阵列.

data_t d3(boost::extents[4][5][6]);
data_2d_view_t d2_view = d3[boost::indices[range(0,4,2)][1][range(0,6,3)]];
data_2d_subarray_t d2_sub = d3[1];
// the following,and anything like it,won't work 
data_2d_subarray_t d2_sub_b = d3[range(0,2)][0];

我不认为有什么重大的性能差异,尽管这取决于您在创建视图时使用的索引类型.观点可能略逊一筹,但不是大O观.

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


对象的传值与返回说起函数,就不免要谈谈函数的参数和返回值。一般的,我们习惯把函数看作一个处理的封装(比如黑箱),而参数和返回值一般对应着处理过程的输入和输出。这种情况下,参数和返回值都是值类型的,也就是说,函数和它的调用者的信息交流方式是用过数据的拷贝来完成,即我们习惯上称呼的“值传递”。但是自从引
从实现装饰者模式中思考C++指针和引用的选择最近在看设计模式的内容,偶然间手痒就写了一个“装饰者”模式的一个实例。该实例来源于风雪涟漪的博客,我对它做了简化。作为一个经典的设计模式,本身并没有太多要说的内容。但是在我尝试使用C++去实现这个模式的实例的时候,出现了一些看似无关紧要但是却引人深思的问题
关于vtordisp知多少?我相信不少人看到这篇文章,多半是来自于对标题中“vtordisp”的好奇。其实这个关键词也是来源于我最近查看对象模型的时候偶然发现的。我是一个喜欢深究问题根源的人(有点牛角尖吧),所以当我第一次发现vtordisp的时候,我也是很自然的把它输进google查找相关资料,但
那些陌生的C++关键字学过程序语言的人相信对关键字并不陌生。偶然间翻起了《C++ Primer》这本书,书中列举了所有C++的关键字。我认真核对了一下,竟然发现有若干个从未使用过的关键字。一时间对一个学了六年C++的自己狠狠鄙视了一番,下决心一定要把它们搞明白!图1红色字体给出的是我个人感觉一般大家
命令行下的树形打印最近在处理代码分析问题时,需要将代码的作用域按照树形结构输出。问题的原型大概是下边这个样子的。图中给了一个简化的代码片段,该代码片段包含5个作用域:全局作用域0、函数fun作用域1、if语句作用域2、else语句作用域3和函数main作用域4。代码作用域有个显著的特点就是具有树形结
虚函数与虚继承寻踪封装、继承、多态是面向对象语言的三大特性,熟悉C++的人对此应该不会有太多异议。C语言提供的struct,顶多算得上对数据的简单封装,而C++的引入把struct“升级”为class,使得面向对象的概念更加强大。继承机制解决了对象复用的问题,然而多重继承又会产生成员冲突的问题,虚继
不要被C++“自动生成”所蒙骗C++对象可以使用两种方式进行创建:构造函数和复制构造函数。假如我们定义了类A,并使用它创建对象。Aa,b;Ac=a;Ad(b);对象a和b使用编译器提供的默认构造函数A::A()创建出来,我们称这种创建方式为对象的定义(包含声明的含义)。对象c和d则是使用已有的对象,
printf背后的故事 说起编程语言,C语言大家再熟悉不过。说起最简单的代码,Helloworld更是众所周知。一条简单的printf语句便可以完成这个简单的功能,可是printf背后到底做了什么事情呢?可能很多人不曾在意,也或许你比我还要好奇!那我们就聊聊printf背后的故事。 一、printf
定义 浮点数就是小数点位置不固定的数,也就是说与定点数不一样,浮点数的小数点后的小数位数可以是任意的,根据IEEE754-1985(也叫IEEE Standard for Binary Floating-Point Arithmetic)的定义,浮点数的类型有两种:单精度类型(用4字节存储)和双精度
在《从汇编看c++的引用和指针》一文中,虽然谈到了引用,但是只是为了将两者进行比较。这里将对引用做进一步的分析。1 引用的实现方式在介绍有关引用的c++书中,很多都说引用只是其引用变量的一个别名。我自己不是很喜欢这种解释,因为觉得这种解释会给人误解,好像引用和变量就是一回事,而且,书中也没有给出,为