微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

使用SSE4矢量化点产品计算

我正在尝试使用SSE4点阵产品改进此代码,但我很难找到解决方案.该函数获取包含具有80个单元格的浮点数组的参数qi和tj,然后计算点积.返回值是具有四个点积的向量.所以我要做的就是平行计算二十个值的四个点积.

你有什么想法如何改进这个代码

inline __m128 ScalarProd20Vec(__m128* qi,__m128* tj)
{
    __m128 res=_mm_add_ps(_mm_mul_ps(tj[0],qi[0]),_mm_mul_ps(tj[1],qi[1]));
    res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[2],qi[2]),_mm_mul_ps(tj[3],qi[3])));
    res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[4],qi[4]),_mm_mul_ps(tj[5],qi[5])));
    res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[6],qi[6]),_mm_mul_ps(tj[7],qi[7])));
    res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[8],qi[8]),_mm_mul_ps(tj[9],qi[9])));
    res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[10],qi[10]),_mm_mul_ps(tj[11],qi[11])));
    res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[12],qi[12]),_mm_mul_ps(tj[13],qi[13])));
    res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[14],qi[14]),_mm_mul_ps(tj[15],qi[15])));
    res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[16],qi[16]),_mm_mul_ps(tj[17],qi[17])));
    res=_mm_add_ps(res,_mm_add_ps(_mm_mul_ps(tj[18],qi[18]),_mm_mul_ps(tj[19],qi[19])));
    return res;
}

解决方法

在我看到的数以百计的SSE示例中,您的代码是从一开始就已经处于非常好的形状的少数几个.您不需要SSE4点阵产品说明. (你可以做得更好!)

但是,有一件事你可以尝试:(我说尝试,因为我还没有计时.)

目前,您有一个数据依赖链.目前,大多数机器的向量加法是3-4个周期.因此,您的代码至少需要30个周期才能运行:

(10 additions on critical path) * (3 cycles addps latency) = 30 cycles

你可以做的是将res变量node-split,如下所示:

__m128 res0 = _mm_add_ps(_mm_mul_ps(tj[ 0],qi[ 0]),_mm_mul_ps(tj[ 1],qi[ 1]));
__m128 res1 = _mm_add_ps(_mm_mul_ps(tj[ 2],qi[ 2]),_mm_mul_ps(tj[ 3],qi[ 3]));

res0 = _mm_add_ps(res0,_mm_add_ps(_mm_mul_ps(tj[ 4],qi[ 4]),_mm_mul_ps(tj[ 5],qi[ 5]))); 
res1 = _mm_add_ps(res1,_mm_add_ps(_mm_mul_ps(tj[ 6],qi[ 6]),_mm_mul_ps(tj[ 7],qi[ 7])));

res0 = _mm_add_ps(res0,_mm_add_ps(_mm_mul_ps(tj[ 8],qi[ 8]),_mm_mul_ps(tj[ 9],qi[ 9])));
res1 = _mm_add_ps(res1,qi[11])));

res0 = _mm_add_ps(res0,qi[13])));
res1 = _mm_add_ps(res1,qi[15])));

res0 = _mm_add_ps(res0,qi[17])));
res1 = _mm_add_ps(res1,qi[19])));

return _mm_add_ps(res0,res1);

这几乎将你的关键路径削减了一半.请注意,由于浮点非关联性,这种优化对于编译器来说是非法的.

这是使用4路节点拆分和AMD FMA4指令的替代版本.如果您不能使用融合乘法添加,请随意拆分.它可能仍然比上面的第一个版本更好.

__m128 res0 = _mm_mul_ps(tj[ 0],qi[ 0]);
__m128 res1 = _mm_mul_ps(tj[ 1],qi[ 1]);
__m128 res2 = _mm_mul_ps(tj[ 2],qi[ 2]);
__m128 res3 = _mm_mul_ps(tj[ 3],qi[ 3]);

res0 = _mm_macc_ps(tj[ 4],qi[ 4],res0);
res1 = _mm_macc_ps(tj[ 5],qi[ 5],res1);
res2 = _mm_macc_ps(tj[ 6],qi[ 6],res2);
res3 = _mm_macc_ps(tj[ 7],qi[ 7],res3);

res0 = _mm_macc_ps(tj[ 8],qi[ 8],res0);
res1 = _mm_macc_ps(tj[ 9],qi[ 9],res1);
res2 = _mm_macc_ps(tj[10],qi[10],res2);
res3 = _mm_macc_ps(tj[11],qi[11],res3);

res0 = _mm_macc_ps(tj[12],qi[12],res0);
res1 = _mm_macc_ps(tj[13],qi[13],res1);
res2 = _mm_macc_ps(tj[14],qi[14],res2);
res3 = _mm_macc_ps(tj[15],qi[15],res3);

res0 = _mm_macc_ps(tj[16],qi[16],res0);
res1 = _mm_macc_ps(tj[17],qi[17],res1);
res2 = _mm_macc_ps(tj[18],qi[18],res2);
res3 = _mm_macc_ps(tj[19],qi[19],res3);

res0 = _mm_add_ps(res0,res1);
res2 = _mm_add_ps(res2,res3);

return _mm_add_ps(res0,res2);

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


对象的传值与返回说起函数,就不免要谈谈函数的参数和返回值。一般的,我们习惯把函数看作一个处理的封装(比如黑箱),而参数和返回值一般对应着处理过程的输入和输出。这种情况下,参数和返回值都是值类型的,也就是说,函数和它的调用者的信息交流方式是用过数据的拷贝来完成,即我们习惯上称呼的“值传递”。但是自从引
从实现装饰者模式中思考C++指针和引用的选择最近在看设计模式的内容,偶然间手痒就写了一个“装饰者”模式的一个实例。该实例来源于风雪涟漪的博客,我对它做了简化。作为一个经典的设计模式,本身并没有太多要说的内容。但是在我尝试使用C++去实现这个模式的实例的时候,出现了一些看似无关紧要但是却引人深思的问题
关于vtordisp知多少?我相信不少人看到这篇文章,多半是来自于对标题中“vtordisp”的好奇。其实这个关键词也是来源于我最近查看对象模型的时候偶然发现的。我是一个喜欢深究问题根源的人(有点牛角尖吧),所以当我第一次发现vtordisp的时候,我也是很自然的把它输进google查找相关资料,但
那些陌生的C++关键字学过程序语言的人相信对关键字并不陌生。偶然间翻起了《C++ Primer》这本书,书中列举了所有C++的关键字。我认真核对了一下,竟然发现有若干个从未使用过的关键字。一时间对一个学了六年C++的自己狠狠鄙视了一番,下决心一定要把它们搞明白!图1红色字体给出的是我个人感觉一般大家
命令行下的树形打印最近在处理代码分析问题时,需要将代码的作用域按照树形结构输出。问题的原型大概是下边这个样子的。图中给了一个简化的代码片段,该代码片段包含5个作用域:全局作用域0、函数fun作用域1、if语句作用域2、else语句作用域3和函数main作用域4。代码作用域有个显著的特点就是具有树形结
虚函数与虚继承寻踪封装、继承、多态是面向对象语言的三大特性,熟悉C++的人对此应该不会有太多异议。C语言提供的struct,顶多算得上对数据的简单封装,而C++的引入把struct“升级”为class,使得面向对象的概念更加强大。继承机制解决了对象复用的问题,然而多重继承又会产生成员冲突的问题,虚继
不要被C++“自动生成”所蒙骗C++对象可以使用两种方式进行创建:构造函数和复制构造函数。假如我们定义了类A,并使用它创建对象。Aa,b;Ac=a;Ad(b);对象a和b使用编译器提供的默认构造函数A::A()创建出来,我们称这种创建方式为对象的定义(包含声明的含义)。对象c和d则是使用已有的对象,
printf背后的故事 说起编程语言,C语言大家再熟悉不过。说起最简单的代码,Helloworld更是众所周知。一条简单的printf语句便可以完成这个简单的功能,可是printf背后到底做了什么事情呢?可能很多人不曾在意,也或许你比我还要好奇!那我们就聊聊printf背后的故事。 一、printf
定义 浮点数就是小数点位置不固定的数,也就是说与定点数不一样,浮点数的小数点后的小数位数可以是任意的,根据IEEE754-1985(也叫IEEE Standard for Binary Floating-Point Arithmetic)的定义,浮点数的类型有两种:单精度类型(用4字节存储)和双精度
在《从汇编看c++的引用和指针》一文中,虽然谈到了引用,但是只是为了将两者进行比较。这里将对引用做进一步的分析。1 引用的实现方式在介绍有关引用的c++书中,很多都说引用只是其引用变量的一个别名。我自己不是很喜欢这种解释,因为觉得这种解释会给人误解,好像引用和变量就是一回事,而且,书中也没有给出,为