如何解决使用nltk从文本文件中提取所有名词
如果您不接受其他选项NLTK
,请签出TextBlob
。它可以轻松提取所有名词和名词短语:
>>> from textblob import TextBlob
>>> txt = """Natural language processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the inter
actions between computers and human (natural) languages."""
>>> blob = TextBlob(txt)
>>> print(blob.noun_phrases)
[u'natural language processing', 'nlp', u'computer science', u'artificial intelligence', u'computational linguistics']
解决方法
有更有效的方法吗?我的代码读取一个文本文件并提取所有名词。
import nltk
File = open(fileName) #open file
lines = File.read() #read all lines
sentences = nltk.sent_tokenize(lines) #tokenize sentences
nouns = [] #empty to array to hold all nouns
for sentence in sentences:
for word,pos in nltk.pos_tag(nltk.word_tokenize(str(sentence))):
if (pos == 'NN' or pos == 'NNP' or pos == 'NNS' or pos == 'NNPS'):
nouns.append(word)
如何减少此代码的时间复杂度?有没有办法避免使用嵌套的for循环?
提前致谢!
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。