微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

ELF 文件和进程控制块之间的关系

如何解决ELF 文件和进程控制块之间的关系

有人能解释一下 ELF 文件间的关系吗?根据我的理解,ELF 文件是基于 Unix 的操作系统用来启动任何应用程序的最终可执行文件,而 PCB(进程控制块)是程序上下文,它存储有关运行过程。显然,这是两个非常不同的东西,我只想知道它们是如何相互关联的,ELF 文件是否指定了 PCB 中存储的内容,或者操作系统是否为每个应用程序具有一致的 PCB 结构?

解决方法

操作系统对每个运行的应用程序都有一个一致的结构。在 Linux 上,它是 task_struct:

struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
    /*
     * For reasons of header soup (see current_thread_info()),this
     * must be the first element of task_struct.
     */
    struct thread_info      thread_info;
#endif
    /* -1 unrunnable,0 runnable,>0 stopped: */
    volatile long           state;

    /*
     * This begins the randomizable portion of task_struct. Only
     * scheduling-critical items should be added above here.
     */
    randomized_struct_fields_start

    void                *stack;
    refcount_t          usage;
    /* Per task flags (PF_*),defined further below: */
    unsigned int            flags;
    unsigned int            ptrace;

#ifdef CONFIG_SMP
    int             on_cpu;
    struct __call_single_node   wake_entry;
#ifdef CONFIG_THREAD_INFO_IN_TASK
    /* Current CPU: */
    unsigned int            cpu;
#endif
    unsigned int            wakee_flips;
    unsigned long           wakee_flip_decay_ts;
    struct task_struct      *last_wakee;

    /*
     * recent_used_cpu is initially set as the last CPU used by a task
     * that wakes affine another task. Waker/wakee relationships can
     * push tasks around a CPU where each wakeup moves to the next one.
     * Tracking a recently used CPU allows a quick search for a recently
     * used CPU that may be idle.
     */
    int             recent_used_cpu;
    int             wake_cpu;
#endif
    int             on_rq;

    int             prio;
    int             static_prio;
    int             normal_prio;
    unsigned int            rt_priority;

    const struct sched_class    *sched_class;
    struct sched_entity     se;
    struct sched_rt_entity      rt;
#ifdef CONFIG_CGROUP_SCHED
    struct task_group       *sched_task_group;
#endif
    struct sched_dl_entity      dl;

#ifdef CONFIG_UCLAMP_TASK
    /*
     * Clamp values requested for a scheduling entity.
     * Must be updated with task_rq_lock() held.
     */
    struct uclamp_se        uclamp_req[UCLAMP_CNT];
    /*
     * Effective clamp values used for a scheduling entity.
     * Must be updated with task_rq_lock() held.
     */
    struct uclamp_se        uclamp[UCLAMP_CNT];
#endif

#ifdef CONFIG_PREEMPT_NOTIFIERS
    /* List of struct preempt_notifier: */
    struct hlist_head       preempt_notifiers;
#endif

#ifdef CONFIG_BLK_DEV_IO_TRACE
    unsigned int            btrace_seq;
#endif

    unsigned int            policy;
    int             nr_cpus_allowed;
    const cpumask_t         *cpus_ptr;
    cpumask_t           cpus_mask;
    void                *migration_pending;
#ifdef CONFIG_SMP
    unsigned short          migration_disabled;
#endif
    unsigned short          migration_flags;

#ifdef CONFIG_PREEMPT_RCU
    int             rcu_read_lock_nesting;
    union rcu_special       rcu_read_unlock_special;
    struct list_head        rcu_node_entry;
    struct rcu_node         *rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */

#ifdef CONFIG_TASKS_RCU
    unsigned long           rcu_tasks_nvcsw;
    u8              rcu_tasks_holdout;
    u8              rcu_tasks_idx;
    int             rcu_tasks_idle_cpu;
    struct list_head        rcu_tasks_holdout_list;
#endif /* #ifdef CONFIG_TASKS_RCU */

#ifdef CONFIG_TASKS_TRACE_RCU
    int             trc_reader_nesting;
    int             trc_ipi_to_cpu;
    union rcu_special       trc_reader_special;
    bool                trc_reader_checked;
    struct list_head        trc_holdout_list;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */

    struct sched_info       sched_info;

    struct list_head        tasks;
#ifdef CONFIG_SMP
    struct plist_node       pushable_tasks;
    struct rb_node          pushable_dl_tasks;
#endif

    struct mm_struct        *mm;
    struct mm_struct        *active_mm;

    /* Per-thread vma caching: */
    struct vmacache         vmacache;

#ifdef SPLIT_RSS_COUNTING
    struct task_rss_stat        rss_stat;
#endif
    int             exit_state;
    int             exit_code;
    int             exit_signal;
    /* The signal sent when the parent dies: */
    int             pdeath_signal;
    /* JOBCTL_*,siglock protected: */
    unsigned long           jobctl;

    /* Used for emulating ABI behavior of previous Linux versions: */
    unsigned int            personality;

    /* Scheduler bits,serialized by scheduler locks: */
    unsigned            sched_reset_on_fork:1;
    unsigned            sched_contributes_to_load:1;
    unsigned            sched_migrated:1;
#ifdef CONFIG_PSI
    unsigned            sched_psi_wake_requeue:1;
#endif

    /* Force alignment to the next boundary: */
    unsigned            :0;

    /* Unserialized,strictly 'current' */

    /*
     * This field must not be in the scheduler word above due to wakelist
     * queueing no longer being serialized by p->on_cpu. However:
     *
     * p->XXX = X;          ttwu()
     * schedule()             if (p->on_rq && ..) // false
     *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
     *   deactivate_task()            ttwu_queue_wakelist())
     *     p->on_rq = 0;            p->sched_remote_wakeup = Y;
     *
     * guarantees all stores of 'current' are visible before
     * ->sched_remote_wakeup gets used,so it can be in this word.
     */
    unsigned            sched_remote_wakeup:1;

    /* Bit to tell LSMs we're in execve(): */
    unsigned            in_execve:1;
    unsigned            in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
    unsigned            restore_sigmask:1;
#endif
#ifdef CONFIG_MEMCG
    unsigned            in_user_fault:1;
#endif
#ifdef CONFIG_COMPAT_BRK
    unsigned            brk_randomized:1;
#endif
#ifdef CONFIG_CGROUPS
    /* disallow userland-initiated cgroup migration */
    unsigned            no_cgroup_migration:1;
    /* task is frozen/stopped (used by the cgroup freezer) */
    unsigned            frozen:1;
#endif
#ifdef CONFIG_BLK_CGROUP
    unsigned            use_memdelay:1;
#endif
#ifdef CONFIG_PSI
    /* Stalled due to lack of memory */
    unsigned            in_memstall:1;
#endif

    unsigned long           atomic_flags; /* Flags requiring atomic access. */

    struct restart_block        restart_block;

    pid_t               pid;
    pid_t               tgid;

#ifdef CONFIG_STACKPROTECTOR
    /* Canary value for the -fstack-protector GCC feature: */
    unsigned long           stack_canary;
#endif
    /*
     * Pointers to the (original) parent process,youngest child,younger sibling,* older sibling,respectively.  (p->father can be replaced with
     * p->real_parent->pid)
     */

    /* Real parent process: */
    struct task_struct __rcu    *real_parent;

    /* Recipient of SIGCHLD,wait4() reports: */
    struct task_struct __rcu    *parent;

    /*
     * Children/sibling form the list of natural children:
     */
    struct list_head        children;
    struct list_head        sibling;
    struct task_struct      *group_leader;

    /*
     * 'ptraced' is the list of tasks this task is using ptrace() on.
     *
     * This includes both natural children and PTRACE_ATTACH targets.
     * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
     */
    struct list_head        ptraced;
    struct list_head        ptrace_entry;

    /* PID/PID hash table linkage. */
    struct pid          *thread_pid;
    struct hlist_node       pid_links[PIDTYPE_MAX];
    struct list_head        thread_group;
    struct list_head        thread_node;

    struct completion       *vfork_done;

    /* CLONE_CHILD_SETTID: */
    int __user          *set_child_tid;

    /* CLONE_CHILD_CLEARTID: */
    int __user          *clear_child_tid;

    u64             utime;
    u64             stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
    u64             utimescaled;
    u64             stimescaled;
#endif
    u64             gtime;
    struct prev_cputime     prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
    struct vtime            vtime;
#endif

#ifdef CONFIG_NO_HZ_FULL
    atomic_t            tick_dep_mask;
#endif
    /* Context switch counts: */
    unsigned long           nvcsw;
    unsigned long           nivcsw;

    /* Monotonic time in nsecs: */
    u64             start_time;

    /* Boot based time in nsecs: */
    u64             start_boottime;

    /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
    unsigned long           min_flt;
    unsigned long           maj_flt;

    /* Empty if CONFIG_POSIX_CPUTIMERS=n */
    struct posix_cputimers      posix_cputimers;

#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
    struct posix_cputimers_work posix_cputimers_work;
#endif

    /* Process credentials: */

    /* Tracer's credentials at attach: */
    const struct cred __rcu     *ptracer_cred;

    /* Objective and real subjective task credentials (COW): */
    const struct cred __rcu     *real_cred;

    /* Effective (overridable) subjective task credentials (COW): */
    const struct cred __rcu     *cred;

#ifdef CONFIG_KEYS
    /* Cached requested key. */
    struct key          *cached_requested_key;
#endif

    /*
     * executable name,excluding path.
     *
     * - normally initialized setup_new_exec()
     * - access it with [gs]et_task_comm()
     * - lock it with task_lock()
     */
    char                comm[TASK_COMM_LEN];

    struct nameidata        *nameidata;

#ifdef CONFIG_SYSVIPC
    struct sysv_sem         sysvsem;
    struct sysv_shm         sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
    unsigned long           last_switch_count;
    unsigned long           last_switch_time;
#endif
    /* Filesystem information: */
    struct fs_struct        *fs;

    /* Open file information: */
    struct files_struct     *files;

#ifdef CONFIG_IO_URING
    struct io_uring_task        *io_uring;
#endif

    /* Namespaces: */
    struct nsproxy          *nsproxy;

    /* Signal handlers: */
    struct signal_struct        *signal;
    struct sighand_struct __rcu     *sighand;
    sigset_t            blocked;
    sigset_t            real_blocked;
    /* Restored if set_restore_sigmask() was used: */
    sigset_t            saved_sigmask;
    struct sigpending       pending;
    unsigned long           sas_ss_sp;
    size_t              sas_ss_size;
    unsigned int            sas_ss_flags;

    struct callback_head        *task_works;

#ifdef CONFIG_AUDIT
#ifdef CONFIG_AUDITSYSCALL
    struct audit_context        *audit_context;
#endif
    kuid_t              loginuid;
    unsigned int            sessionid;
#endif
    struct seccomp          seccomp;
    struct syscall_user_dispatch    syscall_dispatch;

    /* Thread group tracking: */
    u64             parent_exec_id;
    u64             self_exec_id;

    /* Protection against (de-)allocation: mm,files,fs,tty,keyrings,mems_allowed,mempolicy: */
    spinlock_t          alloc_lock;

    /* Protection of the PI data structures: */
    raw_spinlock_t          pi_lock;

    struct wake_q_node      wake_q;

#ifdef CONFIG_RT_MUTEXES
    /* PI waiters blocked on a rt_mutex held by this task: */
    struct rb_root_cached       pi_waiters;
    /* Updated under owner's pi_lock and rq lock */
    struct task_struct      *pi_top_task;
    /* Deadlock detection and priority inheritance handling: */
    struct rt_mutex_waiter      *pi_blocked_on;
#endif

#ifdef CONFIG_DEBUG_MUTEXES
    /* Mutex deadlock detection: */
    struct mutex_waiter     *blocked_on;
#endif

#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
    int             non_block_count;
#endif

#ifdef CONFIG_TRACE_IRQFLAGS
    struct irqtrace_events      irqtrace;
    unsigned int            hardirq_threaded;
    u64             hardirq_chain_key;
    int             softirqs_enabled;
    int             softirq_context;
    int             irq_config;
#endif

#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH         48UL
    u64             curr_chain_key;
    int             lockdep_depth;
    unsigned int            lockdep_recursion;
    struct held_lock        held_locks[MAX_LOCK_DEPTH];
#endif

#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
    unsigned int            in_ubsan;
#endif

    /* Journalling filesystem info: */
    void                *journal_info;

    /* Stacked block device info: */
    struct bio_list         *bio_list;

#ifdef CONFIG_BLOCK
    /* Stack plugging: */
    struct blk_plug         *plug;
#endif

    /* VM state: */
    struct reclaim_state        *reclaim_state;

    struct backing_dev_info     *backing_dev_info;

    struct io_context       *io_context;

#ifdef CONFIG_COMPACTION
    struct capture_control      *capture_control;
#endif
    /* Ptrace state: */
    unsigned long           ptrace_message;
    kernel_siginfo_t        *last_siginfo;

    struct task_io_accounting   ioac;
#ifdef CONFIG_PSI
    /* Pressure stall state */
    unsigned int            psi_flags;
#endif
#ifdef CONFIG_TASK_XACCT
    /* Accumulated RSS usage: */
    u64             acct_rss_mem1;
    /* Accumulated virtual memory usage: */
    u64             acct_vm_mem1;
    /* stime + utime since last update: */
    u64             acct_timexpd;
#endif
#ifdef CONFIG_CPUSETS
    /* Protected by ->alloc_lock: */
    nodemask_t          mems_allowed;
    /* Seqence number to catch updates: */
    seqcount_spinlock_t     mems_allowed_seq;
    int             cpuset_mem_spread_rotor;
    int             cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
    /* Control Group info protected by css_set_lock: */
    struct css_set __rcu        *cgroups;
    /* cg_list protected by css_set_lock and tsk->alloc_lock: */
    struct list_head        cg_list;
#endif
#ifdef CONFIG_X86_CPU_RESCTRL
    u32             closid;
    u32             rmid;
#endif
#ifdef CONFIG_FUTEX
    struct robust_list_head __user  *robust_list;
#ifdef CONFIG_COMPAT
    struct compat_robust_list_head __user *compat_robust_list;
#endif
    struct list_head        pi_state_list;
    struct futex_pi_state       *pi_state_cache;
    struct mutex            futex_exit_mutex;
    unsigned int            futex_state;
#endif
#ifdef CONFIG_PERF_EVENTS
    struct perf_event_context   *perf_event_ctxp[perf_nr_task_contexts];
    struct mutex            perf_event_mutex;
    struct list_head        perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
    unsigned long           preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
    /* Protected by alloc_lock: */
    struct mempolicy        *mempolicy;
    short               il_prev;
    short               pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
    int             numa_scan_seq;
    unsigned int            numa_scan_period;
    unsigned int            numa_scan_period_max;
    int             numa_preferred_nid;
    unsigned long           numa_migrate_retry;
    /* Migration stamp: */
    u64             node_stamp;
    u64             last_task_numa_placement;
    u64             last_sum_exec_runtime;
    struct callback_head        numa_work;

    /*
     * This pointer is only modified for current in syscall and
     * pagefault context (and for tasks being destroyed),so it can be read
     * from any of the following contexts:
     *  - RCU read-side critical section
     *  - current->numa_group from everywhere
     *  - task's runqueue locked,task not running
     */
    struct numa_group __rcu     *numa_group;

    /*
     * numa_faults is an array split into four regions:
     * faults_memory,faults_cpu,faults_memory_buffer,faults_cpu_buffer
     * in this precise order.
     *
     * faults_memory: Exponential decaying average of faults on a per-node
     * basis. Scheduling placement decisions are made based on these
     * counts. The values remain static for the duration of a PTE scan.
     * faults_cpu: Track the nodes the process was running on when a NUMA
     * hinting fault was incurred.
     * faults_memory_buffer and faults_cpu_buffer: Record faults per node
     * during the current scan window. When the scan completes,the counts
     * in faults_memory and faults_cpu decay and these values are copied.
     */
    unsigned long           *numa_faults;
    unsigned long           total_numa_faults;

    /*
     * numa_faults_locality tracks if faults recorded during the last
     * scan window were remote/local or failed to migrate. The task scan
     * period is adapted based on the locality of the faults with different
     * weights depending on whether they were shared or private faults
     */
    unsigned long           numa_faults_locality[3];

    unsigned long           numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */

#ifdef CONFIG_RSEQ
    struct rseq __user *rseq;
    u32 rseq_sig;
    /*
     * RmW on rseq_event_mask must be performed atomically
     * with respect to preemption.
     */
    unsigned long rseq_event_mask;
#endif

    struct tlbflush_unmap_batch tlb_ubc;

    union {
        refcount_t      rcu_users;
        struct rcu_head     rcu;
    };

    /* Cache last used pipe for splice(): */
    struct pipe_inode_info      *splice_pipe;

    struct page_frag        task_frag;

#ifdef CONFIG_TASK_DELAY_ACCT
    struct task_delay_info      *delays;
#endif

#ifdef CONFIG_FAULT_INJECTION
    int             make_it_fail;
    unsigned int            fail_nth;
#endif
    /*
     * When (nr_dirtied >= nr_dirtied_pause),it's time to call
     * balance_dirty_pages() for a dirty throttling pause:
     */
    int             nr_dirtied;
    int             nr_dirtied_pause;
    /* Start of a write-and-pause period: */
    unsigned long           dirty_paused_when;

#ifdef CONFIG_LATENCYTOP
    int             latency_record_count;
    struct latency_record       latency_record[LT_SAVECOUNT];
#endif
    /*
     * Time slack values; these are used to round up poll() and
     * select() etc timeout values. These are in nanoseconds.
     */
    u64             timer_slack_ns;
    u64             default_timer_slack_ns;

#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
    unsigned int            kasan_depth;
#endif

#ifdef CONFIG_KCSAN
    struct kcsan_ctx        kcsan_ctx;
#ifdef CONFIG_TRACE_IRQFLAGS
    struct irqtrace_events      kcsan_save_irqtrace;
#endif
#endif

#if IS_ENABLED(CONFIG_KUNIT)
    struct kunit            *kunit_test;
#endif

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
    /* Index of current stored address in ret_stack: */
    int             curr_ret_stack;
    int             curr_ret_depth;

    /* Stack of return addresses for return function tracing: */
    struct ftrace_ret_stack     *ret_stack;

    /* Timestamp for last schedule: */
    unsigned long long      ftrace_timestamp;

    /*
     * Number of functions that haven't been traced
     * because of depth overrun:
     */
    atomic_t            trace_overrun;

    /* Pause tracing: */
    atomic_t            tracing_graph_pause;
#endif

#ifdef CONFIG_TRACING
    /* State flags for use by tracers: */
    unsigned long           trace;

    /* Bitmask and counter of trace recursion: */
    unsigned long           trace_recursion;
#endif /* CONFIG_TRACING */

#ifdef CONFIG_KCOV
    /* See kernel/kcov.c for more details. */

    /* Coverage collection mode enabled for this task (0 if disabled): */
    unsigned int            kcov_mode;

    /* Size of the kcov_area: */
    unsigned int            kcov_size;

    /* Buffer for coverage collection: */
    void                *kcov_area;

    /* KCOV descriptor wired with this task or NULL: */
    struct kcov         *kcov;

    /* KCOV common handle for remote coverage collection: */
    u64             kcov_handle;

    /* KCOV sequence number: */
    int             kcov_sequence;

    /* Collect coverage from softirq context: */
    unsigned int            kcov_softirq;
#endif

#ifdef CONFIG_MEMCG
    struct mem_cgroup       *memcg_in_oom;
    gfp_t               memcg_oom_gfp_mask;
    int             memcg_oom_order;

    /* Number of pages to reclaim on returning to userland: */
    unsigned int            memcg_nr_pages_over_high;

    /* Used by memcontrol for targeted memcg charge: */
    struct mem_cgroup       *active_memcg;
#endif

#ifdef CONFIG_BLK_CGROUP
    struct request_queue        *throttle_queue;
#endif

#ifdef CONFIG_UPROBES
    struct uprobe_task      *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
    unsigned int            sequential_io;
    unsigned int            sequential_io_avg;
#endif
    struct kmap_ctrl        kmap_ctrl;
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
    unsigned long           task_state_change;
#endif
    int             pagefault_disabled;
#ifdef CONFIG_MMU
    struct task_struct      *oom_reaper_list;
#endif
#ifdef CONFIG_VMAP_STACK
    struct vm_struct        *stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
    /* A live task holds one reference: */
    refcount_t          stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
    int patch_state;
#endif
#ifdef CONFIG_SECURITY
    /* Used by LSM modules for access restriction: */
    void                *security;
#endif

#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
    unsigned long           lowest_stack;
    unsigned long           prev_lowest_stack;
#endif

#ifdef CONFIG_X86_MCE
    void __user         *mce_vaddr;
    __u64               mce_kflags;
    u64             mce_addr;
    __u64               mce_ripv : 1,mce_whole_page : 1,__mce_reserved : 62;
    struct callback_head        mce_kill_me;
#endif

#ifdef CONFIG_KRETPROBES
    struct llist_head               kretprobe_instances;
#endif

    /*
     * New fields for task_struct should be added above here,so that
     * they are included in the randomized portion of task_struct.
     */
    randomized_struct_fields_end

    /* CPU-specific state of this task: */
    struct thread_struct        thread;

    /*
     * WARNING: on x86,'thread_struct' contains a variable-sized
     * structure.  It *MUST* be at the end of 'task_struct'.
     *
     * Do not put anything below here!
     */
};

如您所见,这是一个很长的结构。 ELF 文件主要指定不同段的虚拟地址。今天,一些可执行文件甚至是可重定位的,因此它们会在运行前保留有关如何重定位它们的信息。在 Linux 上运行的 Android 操作系统仅使用可重定位的可执行文件来解决安全问题 (ASLR)。

ELF 文件有一个标题。标题告诉在哪里可以找到程序标题。程序头包含段。每个段可以是可加载的或其他的。如果可以加载。那么操作系统应该只获取段并将其加载到段头指定的虚拟地址。所以 ELF 文件有一个头,它指向一个程序头,该头指向指向实际代码(或代码段)的段头。在动态链接的东西的情况下,它更复杂。我不完全确定它是如何工作的,所以我会把这个留给你去理解。

task_struct 的一个重要字段是 mm 字段,它是指向 mm_struct 的指针。它包含进程的内存映射。另外,根据编译的配置和编译所针对的系统,有很多#ifdef 和#endif 伴随。

我把它留作在源代码中查找 task_struct 的练习。您可以在 https://elixir.bootlin.com/linux/latest/source 上搜索源代码。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。