如何在类尤其是use_named_args装饰器中使用scikit-learn优化?

如何解决如何在类尤其是use_named_args装饰器中使用scikit-learn优化?

我正在使用scikit-learn优化包来调整模型的超参数。出于性能和可读性的原因(我正在使用相同的过程来训练多个模型),我想在一个类中构造整个超参数调整:

...
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.models import Sequential,load_model
from tensorflow.keras.layers import InputLayer,Input,Dense,Embedding,BatchNormalization,Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import TensorBoard,EarlyStopping
from sklearn.preprocessing import MinMaxScaler,OneHotEncoder
from sklearn.model_selection import train_test_split

import skopt
from skopt import gp_minimize
from skopt.space import Real,Categorical,Integer
from skopt.plots import plot_convergence
from skopt.plots import plot_objective,plot_evaluations
from skopt.utils import use_named_args

class hptuning:
   def __init__(self,input_df):
         self.inp_df = input_df
         self.X_train,self.X_test,self.y_train,self.y_test = train_test_split(...)
         self.param_space = self.dim_hptuning()
         self.best_loss = 10000

   def dim_hptuning(self):
         dim_layers = Integer(low=0,high=7,name='layers')
         dim_nodes = Integer(low=2,high=90,name='num_nodes')
         dimensions = [dim_layers,dim_nodes]
         return dimensions

   def create_model(self,layers,nodes):
         model = Sequential()
         for layer in range(layers):
             model.add(Dense(nodes))
         model.add(Dense(1,activation='sigmoid'))
         optimizer = Adam
         model.compile(loss='mean_absolute_error',optimizer=optimizer,metrics=['mae','mse'])
         return model
         
   @use_named_args(dimensions=self.param_space)
   def fitness(self,nodes,layers):
         model = self.create_model(layers=layers,nodes=nodes)
         history = model.fit(x=self.X_train.values,y=self.y_train.values,epochs=200,batch_size=200,verbose=0)
         loss = history.history['val_loss'][-1]
         if loss < self.best_loss:
             model.save('model.h5')
             self.best_loss = loss
         del model
         K.clear_session()
         return loss

   def find_best_model(self):
         search_result = gp.minimize(func=self.fitness,dimensions=self.param_space,acq_func='EI',n_calls=10)
         return search_result
hptun = hptuning(input_df=df)
search_result = hptun.find_best_model()
print(search_result.fun)

现在我遇到这样的问题,装饰器@use_named_args在类中不起作用,因为他应该是(example code of scikit-optimize).我收到错误消息

Traceback (most recent call last):
File "main.py",line 138,in <module>
class hptuning:
File "main.py",line 220,in hptuning
@use_named_args(dimensions=self.param_space)
NameError: name 'self' is not defined

这显然是在这种情况下滥用装饰器的原因。

可能是由于我对这种装饰器的功能缺乏了解,所以我无法使其运行。有人可以帮我吗?

提前谢谢大家的支持!

解决方法

self未被定义的问题与scikit.learn无关。您不能使用self来定义装饰器,因为它仅在您装饰的方法内部定义。但是,即使您回避了这个问题(例如,通过提供param_space作为全局变量),我也希望下一个问题是self将传递给use_named_args装饰器,但是它期望仅对参数进行优化

最明显的解决方案是不在fitness方法上使用装饰器,而是在fitness方法内部定义一个装饰函数,该函数调用find_best_model方法,如下所示:

   def find_best_model(self):
         @use_named_args(dimensions=self.param_space)
         def fitness_wrapper(*args,**kwargs):
             return self.fitness(*args,**kwargs)
         search_result = gp.minimize(func=fitness_wrapper,dimensions=self.param_space,acq_func='EI',n_calls=10)
         return search_result

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


使用本地python环境可以成功执行 import pandas as pd import matplotlib.pyplot as plt # 设置字体 plt.rcParams[&#39;font.sans-serif&#39;] = [&#39;SimHei&#39;] # 能正确显示负号 p
错误1:Request method ‘DELETE‘ not supported 错误还原:controller层有一个接口,访问该接口时报错:Request method ‘DELETE‘ not supported 错误原因:没有接收到前端传入的参数,修改为如下 参考 错误2:cannot r
错误1:启动docker镜像时报错:Error response from daemon: driver failed programming external connectivity on endpoint quirky_allen 解决方法:重启docker -&gt; systemctl r
错误1:private field ‘xxx‘ is never assigned 按Altʾnter快捷键,选择第2项 参考:https://blog.csdn.net/shi_hong_fei_hei/article/details/88814070 错误2:启动时报错,不能找到主启动类 #
报错如下,通过源不能下载,最后警告pip需升级版本 Requirement already satisfied: pip in c:\users\ychen\appdata\local\programs\python\python310\lib\site-packages (22.0.4) Coll
错误1:maven打包报错 错误还原:使用maven打包项目时报错如下 [ERROR] Failed to execute goal org.apache.maven.plugins:maven-resources-plugin:3.2.0:resources (default-resources)
错误1:服务调用时报错 服务消费者模块assess通过openFeign调用服务提供者模块hires 如下为服务提供者模块hires的控制层接口 @RestController @RequestMapping(&quot;/hires&quot;) public class FeignControl
错误1:运行项目后报如下错误 解决方案 报错2:Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.8.1:compile (default-compile) on project sb 解决方案:在pom.
参考 错误原因 过滤器或拦截器在生效时,redisTemplate还没有注入 解决方案:在注入容器时就生效 @Component //项目运行时就注入Spring容器 public class RedisBean { @Resource private RedisTemplate&lt;String
使用vite构建项目报错 C:\Users\ychen\work&gt;npm init @vitejs/app @vitejs/create-app is deprecated, use npm init vite instead C:\Users\ychen\AppData\Local\npm-
参考1 参考2 解决方案 # 点击安装源 协议选择 http:// 路径填写 mirrors.aliyun.com/centos/8.3.2011/BaseOS/x86_64/os URL类型 软件库URL 其他路径 # 版本 7 mirrors.aliyun.com/centos/7/os/x86
报错1 [root@slave1 data_mocker]# kafka-console-consumer.sh --bootstrap-server slave1:9092 --topic topic_db [2023-12-19 18:31:12,770] WARN [Consumer clie
错误1 # 重写数据 hive (edu)&gt; insert overwrite table dwd_trade_cart_add_inc &gt; select data.id, &gt; data.user_id, &gt; data.course_id, &gt; date_format(
错误1 hive (edu)&gt; insert into huanhuan values(1,&#39;haoge&#39;); Query ID = root_20240110071417_fe1517ad-3607-41f4-bdcf-d00b98ac443e Total jobs = 1
报错1:执行到如下就不执行了,没有显示Successfully registered new MBean. [root@slave1 bin]# /usr/local/software/flume-1.9.0/bin/flume-ng agent -n a1 -c /usr/local/softwa
虚拟及没有启动任何服务器查看jps会显示jps,如果没有显示任何东西 [root@slave2 ~]# jps 9647 Jps 解决方案 # 进入/tmp查看 [root@slave1 dfs]# cd /tmp [root@slave1 tmp]# ll 总用量 48 drwxr-xr-x. 2
报错1 hive&gt; show databases; OK Failed with exception java.io.IOException:java.lang.RuntimeException: Error in configuring object Time taken: 0.474 se
报错1 [root@localhost ~]# vim -bash: vim: 未找到命令 安装vim yum -y install vim* # 查看是否安装成功 [root@hadoop01 hadoop]# rpm -qa |grep vim vim-X11-7.4.629-8.el7_9.x
修改hadoop配置 vi /usr/local/software/hadoop-2.9.2/etc/hadoop/yarn-site.xml # 添加如下 &lt;configuration&gt; &lt;property&gt; &lt;name&gt;yarn.nodemanager.res