如何解决TFRecord-Files解析错误尺寸错误
这两天我尝试以TFRecord-Type加载和解析序列化数据。 这是我的代码:
def _float_feature(value):
#Returns a float_list from a float / double.
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _int64_feature(value):
#Returns an int64_list from a bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
#writing the Files
with tf.io.TFRecordWriter(filepath) as FileWriter:
features={
'spectrum_matrix' : _float_feature(spectrum_matrix.reshape(-1)),#Shape (222*88,)
'RPM_Label' : _float_feature(RPM_label),#Shape (222,)
'spectrum_matrix_shape' : _int64_feature(spectrum_matrix.shape),#Shape(2)
'BlockSize' : _int64_feature([BlockSize]),#Shape(1)
'SamplingRate' : _int64_feature([SamplingRate]),#Shape(1)
'CylinderNumber' : _int64_feature([CylinderNumber]) #Shape(1)
}
tf_features = tf.train.Features(feature = features)
tf_example = tf.train.Example(features = tf_features) # create protocol buffer
tf_serialized = tf_example.SerializetoString()
FileWriter.write(tf_serialized) # write serialized data
#Loading and parsing of the Files
feature_map = {
'spectrum_matrix' : tf.io.FixedLenFeature([222*88],tf.float32,default_value=0.0),'RPM_Label' : tf.io.FixedLenFeature([222],'spectrum_matrix_shape' : tf.io.FixedLenFeature([2],tf.int64,default_value=0),'BlockSize' : tf.io.FixedLenFeature([1],'SamplingRate' : tf.io.FixedLenFeature([1],'CylinderNumber' : tf.io.FixedLenFeature([1],}
def _parse_function(serialized):
# Parse the input tf.Example proto using the dictionary above.
features = tf.io.parse_single_example(serialized,feature_map)
return features
tf_file_raw = tf.data.TFRecordDataset([File_path])
for file in tf_file_raw:
print(repr(file))
tf_file= _parse_function(file) #Here is the Error
print(tf_file)
当我尝试此操作时,出现错误:
InvalidArgumentError: Input to reshape is a tensor with 1 values,but the requested shape has 222 [Op:Reshape]
如果我在feature_map中遗漏了“尺寸”,则会出现以下错误:
InvalidArgumentError: Key: spectrum_matrix_shape. Can't parse serialized Example. [Op:ParseExampleV2]
我不知道该怎么做。如我所见,Tensorflow文档采用相同的方式。我的错误在哪里?
你们需要更多信息吗?
谢谢!!
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。