如何在python中提高熵权法的算法效率

如何解决如何在python中提高熵权法的算法效率

下面是代码,但是,处理大数据时非常慢。 (对于 5,000,000行,6列数据框,可能需要花费超过1天的时间。

想知道如何优化它?非常感谢

def ewm(df):
    df = df.apply(lambda x: ((x - np.min(x)) / (np.max(x) - np.min(x))))
    rows,cols = df.shape 
    k = 1.0 / math.log(rows)
 
    lnf = [[None] * cols for i in range(rows)]
    for i in range(0,rows):         
        for j in range(0,cols):
            if df.iloc[i][j] == 0:
                lnfij = 0.0
            else:
                p = df.iloc[i][j] / df.iloc[:,j].sum()
                lnfij = math.log(p) * p * (-k)
            lnf[i][j] = lnfij
    lnf = pd.DataFrame(lnf)
 
    d = 1 - lnf.sum(axis=0)
    w = [[None] * 1 for i in range(cols)]
    for j in range(0,cols):
        wj = d[j] / sum(d)
        w[j] = wj
    
    w = pd.DataFrame(w)
    w = w.round(5)    #.applymap(lambda x:format(x,'.5f'))
    w.index = df.columns
    w.columns =['weight']
    return w

解决方法

在获得特定值时使用iat而不是iloc 如果您执行相同的两次iloc,则将其保存在tmp中

import pandas as pd
import time
import numpy as np
import math

#original method
def ewm(df):
    df = df.apply(lambda x: ((x - np.min(x)) / (np.max(x) - np.min(x))))
    rows,cols = df.shape 
    k = 1.0 / math.log(rows)
 
    lnf = [[None] * cols for i in range(rows)]
    for i in range(0,rows):         
        for j in range(0,cols):
            if df.iloc[i][j] == 0:
                lnfij = 0.0
            else:
                p = df.iloc[i][j] / df.iloc[:,j].sum()
                lnfij = math.log(p) * p * (-k)
            lnf[i][j] = lnfij
    lnf = pd.DataFrame(lnf)
 
    d = 1 - lnf.sum(axis=0)
    w = [[None] * 1 for i in range(cols)]
    for j in range(0,cols):
        wj = d[j] / sum(d)
        w[j] = wj
    
    w = pd.DataFrame(w)
    w = w.round(5)    #.applymap(lambda x:format(x,'.5f'))
    w.index = df.columns
    w.columns =['weight']
    return w


#modified method
def ewm1(df):
    df = df.apply(lambda x: ((x - np.min(x)) / (np.max(x) - np.min(x))))
    rows,cols):
            tmp = df.iat[i,j]  #********************************* modified section
            if tmp == 0:
                lnfij = 0.0
            else:
                p = tmp / df.iloc[:,j].sum()  #************************ end of modified
                lnfij = math.log(p) * p * (-k)
            lnf[i][j] = lnfij
    lnf = pd.DataFrame(lnf)
 
    d = 1 - lnf.sum(axis=0)
    w = [[None] * 1 for i in range(cols)]
    for j in range(0,'.5f'))
    w.index = df.columns
    w.columns =['weight']
    return w



df = pd.DataFrame(np.random.rand(1000,6))
start = time.time()
ewm(df)
print(time.time()-start)

start1 = time.time()
ewm1(df)
print(time.time()-start1)

第一个功能的时间为1.9747240543365479

其秒0.820796012878418

我不确定该方法做什么 但是如果您可以将其分解为几个带有数字返回值的函数 您可以对它们进行散列并进一步改善

,

具有numpy循环功能可以大大加快循环速度

import numpy as np
import pandas as pd

def ewm(df):
    df = df.apply(lambda x: ((x - np.min(x)) / (np.max(x) - np.min(x))))
    rows,cols = df.shape 
    k = 1.0 / math.log(rows)
    
    p = df / df.sum(axis=0)
    lnf = -np.log(p,where = df!=0 )*p*k
    
    d = 1 - lnf.sum(axis=0)
    w = d / d.sum()
    
    w = pd.DataFrame(w)
    w = w.round(5)
    w.index = df.columns
    w.columns =['weight']
    return w

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


使用本地python环境可以成功执行 import pandas as pd import matplotlib.pyplot as plt # 设置字体 plt.rcParams['font.sans-serif'] = ['SimHei'] # 能正确显示负号 p
错误1:Request method ‘DELETE‘ not supported 错误还原:controller层有一个接口,访问该接口时报错:Request method ‘DELETE‘ not supported 错误原因:没有接收到前端传入的参数,修改为如下 参考 错误2:cannot r
错误1:启动docker镜像时报错:Error response from daemon: driver failed programming external connectivity on endpoint quirky_allen 解决方法:重启docker -> systemctl r
错误1:private field ‘xxx‘ is never assigned 按Altʾnter快捷键,选择第2项 参考:https://blog.csdn.net/shi_hong_fei_hei/article/details/88814070 错误2:启动时报错,不能找到主启动类 #
报错如下,通过源不能下载,最后警告pip需升级版本 Requirement already satisfied: pip in c:\users\ychen\appdata\local\programs\python\python310\lib\site-packages (22.0.4) Coll
错误1:maven打包报错 错误还原:使用maven打包项目时报错如下 [ERROR] Failed to execute goal org.apache.maven.plugins:maven-resources-plugin:3.2.0:resources (default-resources)
错误1:服务调用时报错 服务消费者模块assess通过openFeign调用服务提供者模块hires 如下为服务提供者模块hires的控制层接口 @RestController @RequestMapping("/hires") public class FeignControl
错误1:运行项目后报如下错误 解决方案 报错2:Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.8.1:compile (default-compile) on project sb 解决方案:在pom.
参考 错误原因 过滤器或拦截器在生效时,redisTemplate还没有注入 解决方案:在注入容器时就生效 @Component //项目运行时就注入Spring容器 public class RedisBean { @Resource private RedisTemplate<String
使用vite构建项目报错 C:\Users\ychen\work>npm init @vitejs/app @vitejs/create-app is deprecated, use npm init vite instead C:\Users\ychen\AppData\Local\npm-
参考1 参考2 解决方案 # 点击安装源 协议选择 http:// 路径填写 mirrors.aliyun.com/centos/8.3.2011/BaseOS/x86_64/os URL类型 软件库URL 其他路径 # 版本 7 mirrors.aliyun.com/centos/7/os/x86
报错1 [root@slave1 data_mocker]# kafka-console-consumer.sh --bootstrap-server slave1:9092 --topic topic_db [2023-12-19 18:31:12,770] WARN [Consumer clie
错误1 # 重写数据 hive (edu)> insert overwrite table dwd_trade_cart_add_inc > select data.id, > data.user_id, > data.course_id, > date_format(
错误1 hive (edu)> insert into huanhuan values(1,'haoge'); Query ID = root_20240110071417_fe1517ad-3607-41f4-bdcf-d00b98ac443e Total jobs = 1
报错1:执行到如下就不执行了,没有显示Successfully registered new MBean. [root@slave1 bin]# /usr/local/software/flume-1.9.0/bin/flume-ng agent -n a1 -c /usr/local/softwa
虚拟及没有启动任何服务器查看jps会显示jps,如果没有显示任何东西 [root@slave2 ~]# jps 9647 Jps 解决方案 # 进入/tmp查看 [root@slave1 dfs]# cd /tmp [root@slave1 tmp]# ll 总用量 48 drwxr-xr-x. 2
报错1 hive> show databases; OK Failed with exception java.io.IOException:java.lang.RuntimeException: Error in configuring object Time taken: 0.474 se
报错1 [root@localhost ~]# vim -bash: vim: 未找到命令 安装vim yum -y install vim* # 查看是否安装成功 [root@hadoop01 hadoop]# rpm -qa |grep vim vim-X11-7.4.629-8.el7_9.x
修改hadoop配置 vi /usr/local/software/hadoop-2.9.2/etc/hadoop/yarn-site.xml # 添加如下 <configuration> <property> <name>yarn.nodemanager.res