微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

无法将Pandas数据框转换为Tensorflow 2数据集

如何解决无法将Pandas数据框转换为Tensorflow 2数据集

包含数据(bank-full.csv)的csv文件由Google在以下地址提供:https://drive.google.com/drive/folders/1cNtP4iDyGhF620ZbmJdmJWYQrRgJTCum

我的代码如下:

bank_dataframe = pd.read_csv('bank-full.csv',delimiter=';')
features = ['age','job','marital','education','default','balance','housing','loan','contact','campaign','pdays','poutcome']
labels = ['y']

bank_dataframe = bank_dataframe.filter(features + labels)
from sklearn.preprocessing import LabelBinarizer

encoder = LabelBinarizer()
categorical_features = ['default','poutcome']

for feature in categorical_features:
    bank_dataframe[feature] = tuple(encoder.fit_transform(bank_dataframe[feature]))

bank_dataset = Dataset.from_tensor_slices(bank_dataframe)

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\data\util\structure.py in normalize_element(element)
     92       try:
---> 93         spec = type_spec_from_value(t,use_fallback=False)
     94       except TypeError:

~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\data\util\structure.py in type_spec_from_value(element,use_fallback)
    465   raise TypeError("Could not build a typespec for %r with type %s" %
--> 466                   (element,type(element).__name__))
    467 

TypeError: Could not build a typespec for        age                                   job  marital     education  \
0       26  (0,1,0)   single  (0,0)   
1       37  (0,0)   
2       31  (1,0)   
3       47  (0,0)  married  (0,0)   
4       36  (0,0)   
...    ...                                   ...      ...           ...   
45206   51  (1,0)   
45207   59  (0,0)   
45208   29  (0,0)   
45209   43  (0,0)   
45210   51  (0,0)   

      default  balance housing  loan    contact  campaign  pdays  \
0        (0,)     2786    (0,)  (0,)  (1,0)         2     72   
1        (0,)      331    (1,0)         3     -1   
2        (0,)       92    (1,0)         2     -1   
3        (0,)     1568    (1,0)         1    262   
4        (0,)       24    (1,0)         1    154   
...       ...      ...     ...   ...        ...       ...    ...   
45206    (0,)      423    (1,0)         1     90   
45207    (0,)     3800    (0,0)         1     -1   
45208    (0,)       65    (1,0)        14     -1   
45209    (0,)      241    (0,0)        10     -1   
45210    (0,)      516    (1,0)         1    363   

           poutcome    y  
0      (0,0)  yes  
1      (0,1)   no  
2      (0,1)   no  
3      (0,0)  yes  
4      (1,0)   no  
...             ...  ...  
45206  (1,0)   no  
45207  (0,1)   no  
45208  (0,1)   no  
45209  (0,1)   no  
45210  (1,0)   no  

[45211 rows x 13 columns] with type DataFrame

During handling of the above exception,another exception occurred:

ValueError                                Traceback (most recent call last)
<ipython-input-83-d5b55dc9ba50> in <module>
      1 # Convert the DataFrame to a Dataset
      2 
----> 3 bank_dataset = Dataset.from_tensor_slices(bank_dataframe)

~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\data\ops\dataset_ops.py in from_tensor_slices(tensors)
    680       Dataset: A `Dataset`.
    681     """
--> 682     return TensorSliceDataset(tensors)
    683 
    684   class _GeneratorState(object):

~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\data\ops\dataset_ops.py in __init__(self,element)
   2999   def __init__(self,element):
   3000     """See `Dataset.from_tensor_slices()` for details."""
-> 3001     element = structure.normalize_element(element)
   3002     batched_spec = structure.type_spec_from_value(element)
   3003     self._tensors = structure.to_batched_tensor_list(batched_spec,element)

~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\data\util\structure.py in normalize_element(element)
     96         # the value. As a fallback try converting the value to a tensor.
     97         normalized_components.append(
---> 98             ops.convert_to_tensor(t,name="component_%d" % i))
     99       else:
    100         if isinstance(spec,sparse_tensor.SparseTensorSpec):

~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\framework\ops.py in convert_to_tensor(value,dtype,name,as_ref,preferred_dtype,dtype_hint,ctx,accepted_result_types)
   1497 
   1498     if ret is None:
-> 1499       ret = conversion_func(value,dtype=dtype,name=name,as_ref=as_ref)
   1500 
   1501     if ret is NotImplemented:

~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\framework\constant_op.py in _constant_tensor_conversion_function(v,as_ref)
    336                                          as_ref=False):
    337   _ = as_ref
--> 338   return constant(v,name=name)
    339 
    340 

~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\framework\constant_op.py in constant(value,shape,name)
    262   """
    263   return _constant_impl(value,verify_shape=False,--> 264                         allow_broadcast=True)
    265 
    266 

~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\framework\constant_op.py in _constant_impl(value,verify_shape,allow_broadcast)
    273       with trace.Trace("tf.constant"):
    274         return _constant_eager_impl(ctx,value,verify_shape)
--> 275     return _constant_eager_impl(ctx,verify_shape)
    276 
    277   g = ops.get_default_graph()

~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\framework\constant_op.py in _constant_eager_impl(ctx,verify_shape)
    298 def _constant_eager_impl(ctx,verify_shape):
    299   """Implementation of eager constant."""
--> 300   t = convert_to_eager_tensor(value,dtype)
    301   if shape is None:
    302     return t

~\AppData\Roaming\Python\python37\site-packages\tensorflow\python\framework\constant_op.py in convert_to_eager_tensor(value,dtype)
     96       dtype = dtypes.as_dtype(dtype).as_datatype_enum
     97   ctx.ensure_initialized()
---> 98   return ops.EagerTensor(value,ctx.device_name,dtype)
     99 
    100 

ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type int).

如果我从消息中很好地理解,Tensorflow很难识别某些数据类型并将其转换为张量。让我知道您的想法,是什么引起了问题以及如何纠正它。

解决方法

尝试以下代码:

import pandas as pd
bank_dataframe = pd.read_csv('bank.csv',delimiter=';')
features = ['age','job','marital','education','default','balance','housing','loan','contact','campaign','pdays','poutcome']
labels = ['y']

bank_dataframe = bank_dataframe.filter(features + labels)
encoder = LabelBinarizer()
categorical_features = ['default','poutcome','y'] 
# Remove 'y' if you need to.
# But don't forget to use get_dummies on it some other time
# otherwise you will need another way to turn it into a tf.data.Dataset

bank_dataframe = pd.get_dummies(data=bank_dataframe,columns=categorical_features)

bank_dataset = tf.data.Dataset.from_tensor_slices(bank_dataframe)

不使用for循环进行一键编码。使用内置的熊猫get_dummies,它可以为您完成一行任务。您不需要为此使用LabelBinarizer。

如果不清楚,请向我询问详细信息。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。