目录
1 预定义Source
1.1 基于集合的Source
⚫ API
一般用于学习测试时编造数据时使用
1.env.fromElements(可变参数);
2.env.fromColletion(各种集合);
3.env.generateSequence(开始,结束);
4.env.fromSequence(开始,结束);
⚫ 代码演示:
package cn.oldlu.source;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.Arrays;
/**
* Author oldlu
* Desc
* 把本地的普通的Java集合/Scala集合变为分布式的Flink的DataStream集合!
* 一般用于学习测试时编造数据时使用
* 1.env.fromElements(可变参数);
* 2.env.fromColletion(各种集合);
* 3.env.generateSequence(开始,结束);
* 4.env.fromSequence(开始,结束);
*/
public class SourceDemo01 {
public static void main(String[] args) throws Exception {
//1.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//2.source
// * 1.env.fromElements(可变参数);
DataStream<String> ds1 = env.fromElements("hadoop", "spark", "flink");
// * 2.env.fromColletion(各种集合);
DataStream<String> ds2 = env.fromCollection(Arrays.asList("hadoop", "spark", "flink"));
// * 3.env.generateSequence(开始,结束);
DataStream<Long> ds3 = env.generateSequence(1, 10);
//* 4.env.fromSequence(开始,结束);
DataStream<Long> ds4 = env.fromSequence(1, 10);
//3.Transformation
//4.sink
ds1.print();
ds2.print();
ds3.print();
ds4.print();
//5.execute
env.execute();
}
}
1.2 基于文件的Source
⚫ API
一般用于学习测试
env.readTextFile(本地/HDFS文件/文件夹);//压缩文件也可以
⚫ 代码演示:
package cn.oldlu.source;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* Author oldlu
* Desc
* 1.env.readTextFile(本地/HDFS文件/文件夹);//压缩文件也可以
*/
public class SourceDemo02 {
public static void main(String[] args) throws Exception {
//1.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//2.source
// * 1.env.readTextFile(本地文件/HDFS文件);//压缩文件也可以
DataStream<String> ds1 = env.readTextFile("data/input/words.txt");
DataStream<String> ds2 = env.readTextFile("data/input/dir");
DataStream<String> ds3 = env.readTextFile("hdfs://node1:8020//wordcount/input/words.txt");
DataStream<String> ds4 = env.readTextFile("data/input/wordcount.txt.gz");
//3.Transformation
//4.sink
ds1.print();
ds2.print();
ds3.print();
ds4.print();
//5.execute
env.execute();
}
}
1.3 基于Socket的Source
一般用于学习测试
⚫ 需求:
1.在node1上使用nc -lk 9999 向指定端口发送数据nc是netcat的简称,原本是用来设置路由器,我们可以利用它向某个端口发送数据如果没有该命令可以下安装
yum install -y nc
2.使用Flink编写流处理应用程序实时统计单词数量
⚫ 代码实现:
package cn.oldlu.source;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
* Author oldlu
* Desc
* SocketSource
*/
public class SourceDemo03 {
public static void main(String[] args) throws Exception {
//1.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//2.source
DataStream<String> linesDS = env.socketTextStream("node1", 9999);
//3.处理数据-transformation
//3.1每一行数据按照空格切分成一个个的单词组成一个集合
DataStream<String> wordsDS = linesDS.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out) throws Exception {
//value就是一行行的数据
String[] words = value.split(" ");
for (String word : words) {
out.collect(word);//将切割处理的一个个的单词收集起来并返回
}
}
});
//3.2对集合中的每个单词记为1
DataStream<Tuple2<String, Integer>> wordAndOnesDS = wordsDS.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String value) throws Exception {
//value就是进来一个个的单词
return Tuple2.of(value, 1);
}
});
//3.3对数据按照单词(key)进行分组
//KeyedStream<Tuple2<String, Integer>, Tuple> groupedDS = wordAndOnesDS.keyBy(0);
KeyedStream<Tuple2<String, Integer>, String> groupedDS = wordAndOnesDS.keyBy(t -> t.f0);
//3.4对各个组内的数据按照数量(value)进行聚合就是求sum
DataStream<Tuple2<String, Integer>> result = groupedDS.sum(1);
//4.输出结果-sink
result.print();
//5.触发执行-execute
env.execute();
}
}
2 自定义Source
2.1 随机生成数据
⚫ API
一般用于学习测试,模拟生成一些数据Flink还提供了数据源接口,我们实现该接口就可以实现自定义数据源,不同的接口有不同的功能,
分类如下:
SourceFunction:非并行数据源(并行度只能=1)
RichSourceFunction:多功能非并行数据源(并行度只能=1)
ParallelSourceFunction:并行数据源(并行度能够>=1)
RichParallelSourceFunction:多功能并行数据源(并行度能够>=1)–后续学习的Kafka数据源使用的
就是该接口
⚫ 需求
每隔1秒随机生成一条订单信息(订单ID、用户ID、订单金额、时间戳)
要求:
package cn.oldlu.source;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
import java.util.Random;
import java.util.UUID;
/**
* Author oldlu
* Desc
*需求
* 每隔1秒随机生成一条订单信息(订单ID、用户ID、订单金额、时间戳)
* 要求:
* - 随机生成订单ID(UUID)
* - 随机生成用户ID(0-2)
* - 随机生成订单金额(0-100)
* - 时间戳为当前系统时间
*
* API
* 一般用于学习测试,模拟生成一些数据
* Flink还提供了数据源接口,我们实现该接口就可以实现自定义数据源,不同的接口有不同的功能,分类如下:
* SourceFunction:非并行数据源(并行度只能=1)
* RichSourceFunction:多功能非并行数据源(并行度只能=1)
* ParallelSourceFunction:并行数据源(并行度能够>=1)
* RichParallelSourceFunction:多功能并行数据源(并行度能够>=1)--后续学习的Kafka数据源使用的就是该接口
*/
public class SourceDemo04_Customer {
public static void main(String[] args) throws Exception {
//1.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//2.source
DataStream<Order> orderDS = env
.addSource(new MyOrderSource())
.setParallelism(2);
//3.Transformation
//4.Sink
orderDS.print();
//5.execute
env.execute();
}
@Data
@NoArgsConstructor
@AllArgsConstructor
public static class Order {
private String id;
private Integer userId;
private Integer money;
private Long createTime;
}
public static class MyOrderSource extends RichParallelSourceFunction<Order> {
private Boolean flag = true;
@Override
public void run(SourceContext<Order> ctx) throws Exception {
Random random = new Random();
while (flag){
Thread.sleep(1000);
String id = UUID.randomUUID().toString();
int userId = random.nextInt(3);
int money = random.nextInt(101);
long createTime = System.currentTimeMillis();
ctx.collect(new Order(id,userId,money,createTime));
}
}
//取消任务/执行cancle命令的时候执行
@Override
public void cancel() {
flag = false;
}
}
}
2.2 MysqL
⚫ 需求:
实际开发中,经常会实时接收一些数据,要和MysqL中存储的一些规则进行匹配,那么这时候就可以使用Flink自定义数据源从MysqL中读取数据那么现在先完成一个简单的需求:从MysqL中实时加载数据
要求MysqL中的数据有变化,也能被实时加载出来
⚫ 准备数据
CREATE TABLE `t_student` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(255) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8;
INSERT INTO `t_student` VALUES ('1', 'jack', '18');
INSERT INTO `t_student` VALUES ('2', 'tom', '19');
INSERT INTO `t_student` VALUES ('3', 'rose', '20');
INSERT INTO `t_student` VALUES ('4', 'tom', '19');
INSERT INTO `t_student` VALUES ('5', 'jack', '18');
INSERT INTO `t_student` VALUES ('6', 'rose', '20');
⚫ 代码实现:
package cn.oldlu.source;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.util.concurrent.TimeUnit;
/**
* Author oldlu
* Desc
* 需求:
* 实际开发中,经常会实时接收一些数据,要和MysqL中存储的一些规则进行匹配,那么这时候就可以使用Flink自定义数据源从MysqL中读取数据
* 那么现在先完成一个简单的需求:
* 从MysqL中实时加载数据
* 要求MysqL中的数据有变化,也能被实时加载出来
*/
public class SourceDemo05_Customer_MysqL {
public static void main(String[] args) throws Exception {
//1.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//2.source
DataStream<Student> studentDS = env.addSource(new MysqLSource()).setParallelism(1);
//3.Transformation
//4.Sink
studentDS.print();
//5.execute
env.execute();
}
@Data
@NoArgsConstructor
@AllArgsConstructor
public static class Student {
private Integer id;
private String name;
private Integer age;
}
public static class MysqLSource extends RichParallelSourceFunction<Student> {
private Connection conn = null;
private PreparedStatement ps = null;
@Override
public void open(Configuration parameters) throws Exception {
//加载驱动,开启连接
//Class.forName("com.MysqL.jdbc.Driver");
conn = DriverManager.getConnection("jdbc:MysqL://localhost:3306/bigdata", "root", "root");
String sql = "select id,name,age from t_student";
ps = conn.prepareStatement(sql);
}
private boolean flag = true;
@Override
public void run(SourceContext<Student> ctx) throws Exception {
while (flag) {
ResultSet rs = ps.executeQuery();
while (rs.next()) {
int id = rs.getInt("id");
String name = rs.getString("name");
int age = rs.getInt("age");
ctx.collect(new Student(id, name, age));
}
TimeUnit.SECONDS.sleep(5);
}
}
@Override
public void cancel() {
flag = false;
}
@Override
public void close() throws Exception {
if (conn != null) conn.close();
if (ps != null) ps.close();
}
}
}
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。