测试1
@BenchmarkMode(Mode.AverageTime) @OutputTimeUnit(TimeUnit.NANOSECONDS) @Warmup(iterations = 5,time = 3,timeUnit = TimeUnit.SECONDS) @Measurement(iterations = 20,timeUnit = TimeUnit.SECONDS) @Fork(1) @State(Scope.Benchmark) public class StreamBenchTest { List<String> data = new ArrayList<>(); @Setup public void init() { // prepare for(int i=0;i<100;i++){ data.add(UUID.randomUUID().toString()); } } @TearDown public void destory() { // destory } @Benchmark public void benchStream(){ data.stream().forEach(e -> { e.getBytes(); try { Thread.sleep(10); } catch (InterruptedException e1) { e1.printstacktrace(); } }); } @Benchmark public void benchParallelStream(){ data.parallelStream().forEach(e -> { e.getBytes(); try { Thread.sleep(10); } catch (InterruptedException e1) { e1.printstacktrace(); } }); } public static void main(String[] args) throws RunnerException { Options opt = new OptionsBuilder() .include(".*" +StreamBenchTest.class.getSimpleName()+ ".*") .forks(1) .build(); new Runner(opt).run(); } }
parallelStream线程数
默认是Runtime.getRuntime().availableProcessors() - 1,这里为7
运行结果
# Run complete. Total time: 00:02:44 Benchmark Mode Cnt score Error Units StreamBenchTest.benchParallelStream avgt 20 155868805.437 ± 1509175.840 ns/op StreamBenchTest.benchStream avgt 20 1147570372.950 ± 6138494.414 ns/op
测试2
将数据data改为30,同时sleep改为100
Benchmark Mode Cnt score Error Units StreamBenchTest.benchParallelStream avgt 20 414230854.631 ± 725294.455 ns/op StreamBenchTest.benchStream avgt 20 3107250608.500 ± 4805037.628 ns/op
可以发现sleep越长,parallelStream优势越明显。
小结
parallelStream在阻塞场景下优势更明显,其线程池个数默认为
Runtime.getRuntime().availableProcessors() - 1,如果需修改则需设置-Djava.util.concurrent.ForkJoinPool.common.parallelism=8
以上就是本次讲述知识点的全部内容,感谢你对编程小技巧的支持。
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。