FreeBSD链路聚合不比单链路快

我们在FreeBSD 9.3 server1中放置了一个4端口 Intel I340-T4网卡,并在 LACP mode中将其配置为 link aggregation,以减少将8到16 TiB数据从主文件服务器镜像到并行2-4个克隆所需的时间.我们期望获得高达4 Gbit / sec的总带宽,但无论我们尝试过什么,它的速度都不会超过1 Gbit / sec ag​​gregate.2.

我们正在使用iperf3在静态LAN上测试它.第一个实例几乎达到千兆位,正如预期的那样,但当我们并行启动第二个时,两个客户端的速度下降到大约½Gbit/ sec.添加第三个客户端会将所有三个客户端的速度降低到〜⅓ Gbit / sec等.

我们已经注意设置iperf3测试,来自所有四个测试客户端的流量进入不同端口的中央交换机:

我们已经验证每个测试机器都有一个独立的路径返回到机架交换机,并且文件服务器,它的NIC和交换机都有带宽通过分解lagg0组并为其分配单独的IP地址来实现此目的.这个英特尔网卡上的四个接口中的每一个.在该配置中,我们确实实现了~4 Gbit / sec的聚合带宽.

当我们开始沿着这条路走下去的时候,我们用旧的SMC8024L2 managed switch做了这个.(PDF数据表,1.3 MB.)它不是当时最高端的开关,但它应该能够做到这一点.由于年龄的原因,我们认为转换可能是错误的,但升级功能更强大的HP 2530-24G并未改变症状.

HP 2530-24G交换机声称有问题的四个端口确实配置为动态LACP中继:

# show trunks
Load Balancing Method:  L3-based (default)

  Port | Name                             Type      | Group Type    
  ---- + -------------------------------- --------- + ----- --------
  1    | Bart trunk 1                     100/1000T | Dyn1  LACP    
  3    | Bart trunk 2                     100/1000T | Dyn1  LACP    
  5    | Bart trunk 3                     100/1000T | Dyn1  LACP    
  7    | Bart trunk 4                     100/1000T | Dyn1  LACP

我们尝试过被动和主动LACP.

我们已经验证了所有四个NIC端口都在FreeBSD端获得流量:

$sudo tshark -n -i igb$n

奇怪的是,tshark表明,在只有一个客户端的情况下,交换机将1 Gbit / sec流分成两个端口,显然是在它们之间进行乒乓. (SMC和HP交换机都显示了这种行为.)

由于客户端的总带宽只汇集在一个地方 – 在服务器机架的交换机上 – 只为LACP配置了该交换机.

我们首先启动哪个客户端,或者我们启动它们的顺序并不重要.

FreeBSD方面的ifconfig lagg0说:

lagg0: flags=8843<UP,broADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
    options=401bb<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU,VLAN_HWCSUM,TSO4,VLAN_HWTSO>
    ether 90:e2:ba:7b:0b:38
    inet 10.0.0.2 netmask 0xffffff00 broadcast 10.0.0.255
    inet6 fe80::92e2:baff:fe7b:b38%lagg0 prefixlen 64 scopeid 0xa 
    nd6 options=29<PERFORMNUD,IFdisABLED,AUTO_LINKLOCAL>
    media: Ethernet autoselect
    status: active
    laggproto lacp lagghash l2,l3,l4
    laggport: igb3 flags=1c<ACTIVE,COLLECTING,disTRIBUTING>
    laggport: igb2 flags=1c<ACTIVE,disTRIBUTING>
    laggport: igb1 flags=1c<ACTIVE,disTRIBUTING>
    laggport: igb0 flags=1c<ACTIVE,disTRIBUTING>

我们在the FreeBSD network tuning guide中应用了尽可能多的建议,这对我们的情况很有意义. (其中大部分都是无关紧要的,例如关于增加最大FD的东西.)

我们已经尝试过turning off TCP segmentation offloading,结果没有变化.

我们没有第二个4端口服务器NIC来设置第二个测试.由于使用4个独立接口进行了成功测试,我们假设没有任何硬件损坏

我们看到这些道路向前发展,它们都没有吸引力:

>购买更大,更糟糕的开关,希望SMC的LACP实施很糟糕,并且新开​​关会更好. (升级到HP 2530-24G没有帮助.)
>更多地盯着FreeBSD lagg配置,希望我们错过了一些东西
>忘记链接聚合并使用循环DNS来实现负载平衡.
>更换服务器NIC并再次切换,这次使用10 GigE,大约是此LACP实验硬件成本的4倍.

脚注

>为什么不转到FreeBSD 10,你问?因为FreeBSD 10.0-RELEASE仍然使用ZFS池版本28,并且该服务器已经升级到ZFS池5000,这是FreeBSD 9.3中的一个功能.在FreeBSD 10.1发布about a month hence之前,10.x行不会得到.不然,从源代码重建到10.0-STABLE前沿不是一个选项,因为这是一个生产服务器.
>请不要妄下结论.我们在问题后面的测试结果告诉您为什么这不是this question的副本.
> iperf3是纯粹的网络测试.虽然最终目标是尝试从磁盘填充4 Gbit / sec聚合管道,但我们尚未涉及磁盘子系统.
>可能是越野车或设计不佳,但不会比它离开工厂时更加破碎.
>我已经因为这样做而睁大眼睛了.

在系统和交换机上使用的负载均衡算法是什么?

我所有的经验都是在Linux和Cisco上,而不是FreeBSD和SMC,但同样的理论仍然适用.

Linux绑定驱动程序的LACP模式以及较早的Cisco交换机(如2950)上的负载平衡模式是仅基于MAC地址进行平衡.

这意味着如果您的所有流量都从一个系统(文件服务器)传输到另一个MAC(交换机上的认网关或交换虚拟接口),那么源MAC和目标MAC将是相同的,因此只有一个从站使用.

从您的图表中看起来您不会将流量发送到认网关,但我不确定测试服务器是否在10.0.0.0/24中,或者测试系统是否位于其他子网中并且是通过交换机上的三层接口.

如果您在交换机上路由,那么就是您的答案.

解决方案是使用不同的负载平衡算法.

我再次没有使用BSD或SMC的经验,但Linux和思科可以根据L3信息(IP地址)或L4信息(端口号)进行平衡.

由于每个测试系统必须具有不同的IP,请尝试基于L3信息进行平衡.如果仍然无效,请更改几个IP,看看是否更改了负载平衡模式.

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


迭代器模式(Iterator)迭代器模式(Iterator)[Cursor]意图:提供一种方法顺序访问一个聚合对象中的每个元素,而又不想暴露该对象的内部表示。应用:STL标准库迭代器实现、Java集合类型迭代器等模式结构:心得:迭代器模式的目的是在不获知集合对象内部细节的同时能对集合元素进行遍历操作
高性能IO模型浅析服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种:(1)同步阻塞IO(BlockingIO):即传统的IO模型。(2)同步非阻塞IO(Non-blockingIO):默认创建的socket都是阻塞的,非阻塞IO要求socket被设置为NONBLOCK。注意这里所说的N
策略模式(Strategy)策略模式(Strategy)[Policy]意图:定义一系列算法,把他们封装起来,并且使他们可以相互替换,使算法可以独立于使用它的客户而变化。应用:排序的比较方法、封装针对类的不同的算法、消除条件判断、寄存器分配算法等。模式结构:心得:对对象(Context)的处理操作可
访问者模式(Visitor)访问者模式(Visitor)意图:表示一个作用于某对象结构中的各元素的操作,它使你在不改变各元素的类的前提下定义作用于这些元素的新操作。应用:作用于编译器语法树的语义分析算法。模式结构:心得:访问者模式是要解决对对象添加新的操作和功能时候,如何尽可能不修改对象的类的一种方
命令模式(Command)命令模式(Command)[Action/Transaction]意图:将一个请求封装为一个对象,从而可用不同的请求对客户参数化。对请求排队或记录请求日志,以及支持可撤消的操作。应用:用户操作日志、撤销恢复操作。模式结构:心得:命令对象的抽象接口(Command)提供的两个
生成器模式(Builder)生成器模式(Builder)意图:将一个对象的构建和它的表示分离,使得同样的构建过程可以创建不同的表示。 应用:编译器词法分析器指导生成抽象语法树、构造迷宫等。模式结构:心得:和工厂模式不同的是,Builder模式需要详细的指导产品的生产。指导者(Director)使用C
设计模式学习心得《设计模式:可复用面向对象软件的基础》一书以更贴近读者思维的角度描述了GOF的23个设计模式。按照书中介绍的每个设计模式的内容,结合网上搜集的资料,我将对设计模式的学习心得总结出来。网络上关于设计模式的资料和文章汗牛充栋,有些文章对设计模式介绍生动形象。但是我相信“一千个读者,一千个
工厂方法模式(Factory Method)工厂方法模式(Factory Method)[Virtual Constructor]意图:定义一个用于创建对象的接口,让子类决定实例化哪一个类,使一个类的实力化延迟到子类。应用:多文档应用管理不同类型的文档。模式结构:心得:面对同一继承体系(Produc
单例模式(Singleton)单例模式(Singleton)意图:保证一个类只有一个实例,并提供一个访问它的全局访问点。应用:Session或者控件的唯一示例等。模式结构:心得:单例模式应该是设计模式中最简单的结构了,它的目的很简单,就是保证自身的实例只有一份。实现这种目的的方式有很多,在Java中
装饰者模式(Decorator)装饰者模式(Decorator)[Wrapper]意图:动态的给一个对象添加一些额外的职责,就增加功能来说,比生成子类更为灵活。应用:给GUI组件添加功能等。模式结构:心得:装饰器(Decorator)和被装饰的对象(ConcreteComponent)拥有统一的接口
抽象工厂模式(Abstract Factory)抽象工厂模式(Abstract Factory)[Kit]意图:提供一个创建一系列相关或相互依赖对象的接口,而无须指定他们具体的类。应用:用户界面工具包。模式结构:心得:工厂方法把生产产品的方式封装起来了,但是一个工厂只能生产一类对象,当一个工厂需要生
桥接模式(Bridge)桥接模式(Bridge)[Handle/Body]意图:将抽象部分与它的实现部分分离,使他们都可以独立的变化。应用:不同系统平台的Windows界面。模式结构:心得:用户所见类体系结构(Window派生)提供了一系列用户的高层操作的接口,但是这些接口的实现是基于具体的底层实现
适配器模式(Adapter)适配器模式(Adapter)[Wrapper]意图:将类的一个接口转换成用户希望的另一个接口,使得原本由于接口不兼容而不能一起工作的类可以一起工作。应用:将图形类接口适配到用户界面组件类中。模式结构:心得:适配器模式一般应用在具有相似接口可复用的条件下。目标接口(Targ
组合模式(Composition)组合模式(Composition)意图:将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。应用:组合图形、文件目录、GUI容器等。模式结构:心得: 用户(Client)通过抽象类(Component)提供的公用接口统一
原型模式(Prototype)原型模式(Prototype)意图:用原型实例制定创建对象的种类,并且通过拷贝这些原型创建新的对象。应用:Java/C#中的Clonable和IClonable接口等。模式结构:心得:原型模式本质上就是对象的拷贝,使用对象拷贝代替对象创建的原因有很多。比如对象的初始化构
什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。