依赖反向传播改进神经网络数据处理的精确度

在前几节,我们一直强调,人工智能运行的一个基本原理是,由人分析具体问题然后抽象出问题与数据间的逻辑关系,这种逻辑关系往往是一个数学模型。计算机的任务是根据大量数据的分析来确定数学模型中的各种参数。前面我们详细讨论过的一个例子就是二维平面上点集的划分。

如上图,由人对问题进行抽象分析后得出,两组数据可以用一条通过圆点的直线分割开来。直线所对应的方程就是问题与数据间的逻辑关系,也就是数学模型,模型的参数就是直线的斜率,这条直线与横坐标成多大的夹角才能更好的将两组数据区分开来。计算机的任务就是根据输入的大量点坐标,然后根据给定算法步骤把这个夹角计算出来。计算的办法就是开始先随机设置这个夹角值,然后检测直线区分数据的效果,如果数据集中总共有100个点,其中60个点属于红点,但是当前直线只能将30个点识别为红点,那么误差就是30个点,根据这个误差,算法调节直线夹角,使得调整后能正确识别的红点数量越来越多,这就是人工智能运转的基本原理。

前面说过,神经网络模型中,需要修正的参数是神经元链路之间的权重值,问题在于如何修改,如下图,假定最后神经元输出结果,跟正确结果比对后得到一个误差,那么我们如何根据误差来修正W(1,1) 和 W(2,1)呢?

神经网络模型的问题在于,任何一个节点链路权重的改变都会对最终结果产生影响。所以当我们拿到计算结果产生的误差后,不可能仅仅修改其中某一个权重,而是所有权重都要相应修改。接下来问题是,权重参数有多个,而最终误差只有一个,那么如何把误差分配给每个权重进行调整呢?一种做法是把误差平均分配给每个权重,如下图:

但这种大锅饭机制不合理,因为W(1,1)权重大,传送给输出节点的信号量就强,因此最终结果的误差来自于这条链路的贡献相对就大,因此要调整的话,这个权重的调整幅度肯定要比下面链路权重的调整幅度要大,因此合理的做法是,根据权重的比值进行相应的调整,因此网络要把误差的四分之三传递给W(1,1),四分之一传递给W(2,1),于是误差反向传播的模式如下图:

这个误差回传机制继续运用到后续节点链路上,这就是所谓的反向传导。当前模型中,输出节点只有一个,如果输出节点有多个怎么办?例如下图:

上图网络有两个输出节点,两个节点的输出结果跟正确结果都会产生偏差,其处理方式跟一个节点时一样,每个节点拿到误差后,根据进入其节点的链路权重,等比例的返回给后面节点。如果第一个节点的输出结果为O1,对应的正确结果为T1,那么第一个输出节点的误差就是E1 = T1 - O1.从上图可以看出E1会根据W(1,1)和W(2,1)的相互比值,同比例的返回给第一层的节点1和节点2.误差E2的分配也同理。这么算来,用于调整权重W(1,1)的误差比值为:

同理用于调整权重W(2,1)的误差比值为:

举个实际例子,假定E1= 9,W(1,1) = 6,W(2,1) = 3,那么用于调整W(1,1)的误差值为 9 * (6 / (6+3)) = 6,用于调整W(2,1)的误差值为 9 *(3/(3+6)) = 3。同理E2也依据相同原则分配给W(1,2)和W(2,2).

如果网络有三层,那么误差以相同机制反向传播,如下图:

误差先从最外层节点开始,根据链路的权重比例返回给中间隐藏层节点1,隐藏层节点1和输入层节点1之间,在根据两者的链接链路比重把中间层节点1接收到的误差同比例分配给权重W(i,h)。如果还有更多的层级,这个反向传播机制就一直进行下去。我们用一个具体实例把误差的反向传播机制走一遍。

最外层输出两个输出节点的误差分别为1.5和0.5,中间层节点1与最外层节点1之间的链路权重为2.0,中间层节点1与最外层节点2的链路权重为1.0,中间层节点2与最外层节点1的链路权重为3.0,中间层节点2与最外层节点2的链路权重为4.0,于是最外层节点1反向传导给中间层节点1的误差为 1.5 * (2 / (2+3)) = 1.5 * (2/5) = 0.6,最外层节点2反向传导给中间层节点1的误差为 0.5 * (1 / (1+4)) = 0.5 *(1/5) = 0.1,因此中间层节点1接收到的总误差为0.7.

中间层节点1与最外层节点2间链路权重为1.0,因此最外层节点1反向传播给中间层节点2的误差为1.5 * (3.0 / (2.0 + 3.0)) = 1.5 * (3/5) = 0.9,中间层节点2与最外层节点2的链路权重为4.0,因此最外层节点2反向传播给中间层节点2的误差为0.5 * (4.0 / (1.0 + 4.0)) = 0.5 * (4/5) = 0.4,由此中间层节点2获得的误差为1.3.

我们以同样的方法将误差从中间层传到回最外层,如下图:

最外层节点1与中间层节点1的链路权重为3.0,最外层节点2余中间层节点1链路权重为2.0,因此中间层节点1反向传导给最外层节点1的误差为 0.7 * (3.0 / (3.0+2.0) ) = 0.7 * (3/5) = 0.42,中间层节点1反向传导给最外层节点2的误差为 0.7 * (2.0 / (3.0 + 2.0) ) = 0.28.

最外层节点1与中间层节点2的链路权重为1.0,最外层节点2与中间层节点2的链路权重为7.0,因此中间层节点2反向传导给最外层节点1的误差为 1.3 * (1.0 / (1.0 + 7.0) ) = 1.3 * (1/8) = 0.1625,中间层节点2反向传导给最外层节点2的误差为1.3 * (7.0 / (7.0 + 1.0) ) = 1.1375.

由此最外层节点1获得的总误差为 0.42 + 0.1625 = 0.5825, 最外层节点2获得的误差为0.28 + 1.1375 = 1.4175.

通过反向传播,我们就能把最外层节点获得的误差传导给神经网络每一层的每个节点,每个节点再根据获得的误差调整它与下一层网络节点的链路权重,这个误差回传过程就是神经网络中经常提到的反向传播机制。

下一节我们看看如何使用矩阵快速实现反向传播误差的计算。

更详细的讲解和代码调试演示过程,请点击链接

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


迭代器模式(Iterator)迭代器模式(Iterator)[Cursor]意图:提供一种方法顺序访问一个聚合对象中的每个元素,而又不想暴露该对象的内部表示。应用:STL标准库迭代器实现、Java集合类型迭代器等模式结构:心得:迭代器模式的目的是在不获知集合对象内部细节的同时能对集合元素进行遍历操作
高性能IO模型浅析服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种:(1)同步阻塞IO(BlockingIO):即传统的IO模型。(2)同步非阻塞IO(Non-blockingIO):默认创建的socket都是阻塞的,非阻塞IO要求socket被设置为NONBLOCK。注意这里所说的N
策略模式(Strategy)策略模式(Strategy)[Policy]意图:定义一系列算法,把他们封装起来,并且使他们可以相互替换,使算法可以独立于使用它的客户而变化。应用:排序的比较方法、封装针对类的不同的算法、消除条件判断、寄存器分配算法等。模式结构:心得:对对象(Context)的处理操作可
访问者模式(Visitor)访问者模式(Visitor)意图:表示一个作用于某对象结构中的各元素的操作,它使你在不改变各元素的类的前提下定义作用于这些元素的新操作。应用:作用于编译器语法树的语义分析算法。模式结构:心得:访问者模式是要解决对对象添加新的操作和功能时候,如何尽可能不修改对象的类的一种方
命令模式(Command)命令模式(Command)[Action/Transaction]意图:将一个请求封装为一个对象,从而可用不同的请求对客户参数化。对请求排队或记录请求日志,以及支持可撤消的操作。应用:用户操作日志、撤销恢复操作。模式结构:心得:命令对象的抽象接口(Command)提供的两个
生成器模式(Builder)生成器模式(Builder)意图:将一个对象的构建和它的表示分离,使得同样的构建过程可以创建不同的表示。 应用:编译器词法分析器指导生成抽象语法树、构造迷宫等。模式结构:心得:和工厂模式不同的是,Builder模式需要详细的指导产品的生产。指导者(Director)使用C
设计模式学习心得《设计模式:可复用面向对象软件的基础》一书以更贴近读者思维的角度描述了GOF的23个设计模式。按照书中介绍的每个设计模式的内容,结合网上搜集的资料,我将对设计模式的学习心得总结出来。网络上关于设计模式的资料和文章汗牛充栋,有些文章对设计模式介绍生动形象。但是我相信“一千个读者,一千个
工厂方法模式(Factory Method)工厂方法模式(Factory Method)[Virtual Constructor]意图:定义一个用于创建对象的接口,让子类决定实例化哪一个类,使一个类的实力化延迟到子类。应用:多文档应用管理不同类型的文档。模式结构:心得:面对同一继承体系(Produc
单例模式(Singleton)单例模式(Singleton)意图:保证一个类只有一个实例,并提供一个访问它的全局访问点。应用:Session或者控件的唯一示例等。模式结构:心得:单例模式应该是设计模式中最简单的结构了,它的目的很简单,就是保证自身的实例只有一份。实现这种目的的方式有很多,在Java中
装饰者模式(Decorator)装饰者模式(Decorator)[Wrapper]意图:动态的给一个对象添加一些额外的职责,就增加功能来说,比生成子类更为灵活。应用:给GUI组件添加功能等。模式结构:心得:装饰器(Decorator)和被装饰的对象(ConcreteComponent)拥有统一的接口
抽象工厂模式(Abstract Factory)抽象工厂模式(Abstract Factory)[Kit]意图:提供一个创建一系列相关或相互依赖对象的接口,而无须指定他们具体的类。应用:用户界面工具包。模式结构:心得:工厂方法把生产产品的方式封装起来了,但是一个工厂只能生产一类对象,当一个工厂需要生
桥接模式(Bridge)桥接模式(Bridge)[Handle/Body]意图:将抽象部分与它的实现部分分离,使他们都可以独立的变化。应用:不同系统平台的Windows界面。模式结构:心得:用户所见类体系结构(Window派生)提供了一系列用户的高层操作的接口,但是这些接口的实现是基于具体的底层实现
适配器模式(Adapter)适配器模式(Adapter)[Wrapper]意图:将类的一个接口转换成用户希望的另一个接口,使得原本由于接口不兼容而不能一起工作的类可以一起工作。应用:将图形类接口适配到用户界面组件类中。模式结构:心得:适配器模式一般应用在具有相似接口可复用的条件下。目标接口(Targ
组合模式(Composition)组合模式(Composition)意图:将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。应用:组合图形、文件目录、GUI容器等。模式结构:心得: 用户(Client)通过抽象类(Component)提供的公用接口统一
原型模式(Prototype)原型模式(Prototype)意图:用原型实例制定创建对象的种类,并且通过拷贝这些原型创建新的对象。应用:Java/C#中的Clonable和IClonable接口等。模式结构:心得:原型模式本质上就是对象的拷贝,使用对象拷贝代替对象创建的原因有很多。比如对象的初始化构
什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。