设计模式六大原则 - 里氏替换原则

我们都知道面向对象有三大特性:封装、继承、多态。所以我们在实际开发过程中,子类在继承父类后,根据多态的特性,可能是图一时方便,经常任意重写父类方法,那么这种方式会大大增加代码出问题的几率。比如下面场景:类C实现了某项功能F1。现在需要对功能F1作修改扩展,将功能F1扩展为F,其中F由原有的功能F1和新功能F2组成。新功能F由类C的子类C1来完成,则子类C1在完成功能F的同时,有可能会导致类C的原功能F1发生故障。这时候里氏替换原则就闪亮登场了。

原文链接http://tianweili.github.io/blog/2015/02/04/liskov-substitution-principle/

什么是里氏替换原则

前面说过的单一职责原则,从字面意思就很好理解,但是里氏替换原则就有点让人摸不着头脑。查过资料后发现原来这项原则最早是在1988年,由麻省理工学院一位姓里的女士(Liskov)提出来的。

英文缩写:LSP (Liskov Substitution Principle)。

严格的定义:如果对每一个类型为T1的对象o1,都有类型为T2的对象o2,使得以T1定义的所有程序P在所有的对象o1都换成o2时,程序P的行为没有变化,那么类型T2是类型T1的子类型。

通俗的定义:所有引用基类的地方必须能透明地使用其子类的对象。

更通俗的定义:子类可以扩展父类功能,但不能改变父类原有的功能

代码示例

     
     
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
     
     
//抽象父类电脑
public abstract class Computer {
public abstract void use();
}
class IBM extends Computer{
@Override
public void use() {
System.out.println( "use IBM Computer.");
}
}
class HP extends Computer{
@Override
public void use() {
System.out.println( "use HP Computer.");
}
}
public class Client{
public static void main(String[] args) {
Computer ibm = new IBM();
Computer hp = new HP(); //引用基类的地方能透明地使用其子类的对象。
ibm.use();
hp.use();
}
}

四层含义

里氏替换原则包含以下4层含义:

子类可以实现父类的抽象方法,但是不能覆盖父类的非抽象方法

在我们做系统设计时,经常会设计接口或抽象类,然后由子类来实现抽象方法,这里使用的其实就是里氏替换原则。子类可以实现父类的抽象方法很好理解,事实上,子类也必须完全实现父类的抽象方法,哪怕写一个方法,否则会编译报错。

里氏替换原则的关键点在于不能覆盖父类的非抽象方法父类中凡是已经实现好的方法,实际上是在设定一系列的规范和契约,虽然它不强制要求所有的子类必须遵从这些规范,但是如果子类对这些非抽象方法任意修改,就会对整个继承体系造成破坏。而里氏替换原则就是表达了这一层含义。

在面向对象的设计思想中,继承这一特性为系统的设计带来了极大的便利性,但是由之而来的也潜在着一些风险。就像开篇所提到的那一场景一样,对于那种情况最好遵循里氏替换原则,类C1继承类C时,可以添加方法完成新增功能,尽量不要重写父类C的方法。否则可能带来难以预料的风险,比如下面一个简单的例子还原开篇的场景:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
     
     
public class C {
public int func(int a,int b){
return a+b;
}
}
public class C1 extends C{
@Override
public int func(int a,int b) {
return a-b;
}
}
public class Client{
public static void main(String[] args) {
C c = new C1();
System.out.println( "2+1=" + c.func( 2,1));
}
}

运行结果:2+1=1

上面的运行结果明显是错误的。类C1继承C,后来需要增加功能,类C1并没有新写一个方法,而是直接重写了父类C的func方法,违背里氏替换原则,引用父类的地方并不能透明的使用子类的对象,导致运行结果出错。

子类中可以增加自己特有的方法

在继承父类属性方法的同时,每个子类也都可以有自己的个性,在父类的基础上扩展自己的功能。前面其实已经提到,当功能扩展时,子类尽量不要重写父类方法,而是另写一个方法,所以对上面的代码加以更改,使其符合里氏替换原则,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
int b){
     
     
     
     
return a+b;
}
}
public class C1 extends C{
public int func2(int a,int b) {
return a-b;
}
}
public class Client{
public static void main(String[] args) {
C1 c = new C1();
System.out.println( "2-1=" + c.func2( 2,1));
}
}

运行结果:2-1=1

当子类覆盖或实现父类方法时,方法的前置条件(即方法的形参)要比父类方法的输入参数更宽松

代码示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
     
     
import java.util.HashMap;
public class Father {
public void func(HashMap m){
System.out.println( "执行父类...");
}
}
import java.util.Map;
public class Son extends Father{
public void func(Map m){ //方法的形参比父类的更宽松
System.out.println( "执行子类...");
}
}
import java.util.HashMap;
public class Client{
public static void main(String[] args) {
Father f = new Son(); //引用基类的地方能透明地使用其子类的对象。
HashMap h = new HashMap();
f.func(h);
}
}

运行结果:执行父类

注意Son类的func方法前面是不能加@Override注解的,因为否则会编译提示报错,因为这并不是重写(Override),而是重载(Overload),因为方法的输入参数不同。重写和重载的区别在Java面向对象详解一文中已作解释,此处不再赘述。

当子类的方法实现父类的抽象方法时,方法的后置条件(即方法的返回值)要比父类更严格

代码示例:

import java.util.Map;
public abstract class Father {
public abstract Map func();
}
import java.util.HashMap;
public class Son extends Father{
@Override
public HashMap func(){ //方法的返回值比父类的更严格
HashMap h = new HashMap();
h.put( "h","执行子类...");
return h;
}
}
public class Client{
public static void main(String[] args) {
Father f = new Son(); //引用基类的地方能透明地使用其子类的对象。
System.out.println(f.func());
}
}

执行结果:{h=执行子类…}

总结

继承作为面向对象三大特性之一,在给程序设计带来巨大便利的同时,也带来了一些弊端,它增加了对象之间的耦合性。因此在系统设计时,遵循里氏替换原则,尽量避免子类重写父类方法,可以有效降低代码出错的可能性。


作者:李天炜

原文链接http://tianweili.github.io/blog/2015/02/04/liskov-substitution-principle/

转载请注明作者及出处,谢谢。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


迭代器模式(Iterator)迭代器模式(Iterator)[Cursor]意图:提供一种方法顺序访问一个聚合对象中的每个元素,而又不想暴露该对象的内部表示。应用:STL标准库迭代器实现、Java集合类型迭代器等模式结构:心得:迭代器模式的目的是在不获知集合对象内部细节的同时能对集合元素进行遍历操作
高性能IO模型浅析服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种:(1)同步阻塞IO(BlockingIO):即传统的IO模型。(2)同步非阻塞IO(Non-blockingIO):默认创建的socket都是阻塞的,非阻塞IO要求socket被设置为NONBLOCK。注意这里所说的N
策略模式(Strategy)策略模式(Strategy)[Policy]意图:定义一系列算法,把他们封装起来,并且使他们可以相互替换,使算法可以独立于使用它的客户而变化。应用:排序的比较方法、封装针对类的不同的算法、消除条件判断、寄存器分配算法等。模式结构:心得:对对象(Context)的处理操作可
访问者模式(Visitor)访问者模式(Visitor)意图:表示一个作用于某对象结构中的各元素的操作,它使你在不改变各元素的类的前提下定义作用于这些元素的新操作。应用:作用于编译器语法树的语义分析算法。模式结构:心得:访问者模式是要解决对对象添加新的操作和功能时候,如何尽可能不修改对象的类的一种方
命令模式(Command)命令模式(Command)[Action/Transaction]意图:将一个请求封装为一个对象,从而可用不同的请求对客户参数化。对请求排队或记录请求日志,以及支持可撤消的操作。应用:用户操作日志、撤销恢复操作。模式结构:心得:命令对象的抽象接口(Command)提供的两个
生成器模式(Builder)生成器模式(Builder)意图:将一个对象的构建和它的表示分离,使得同样的构建过程可以创建不同的表示。 应用:编译器词法分析器指导生成抽象语法树、构造迷宫等。模式结构:心得:和工厂模式不同的是,Builder模式需要详细的指导产品的生产。指导者(Director)使用C
设计模式学习心得《设计模式:可复用面向对象软件的基础》一书以更贴近读者思维的角度描述了GOF的23个设计模式。按照书中介绍的每个设计模式的内容,结合网上搜集的资料,我将对设计模式的学习心得总结出来。网络上关于设计模式的资料和文章汗牛充栋,有些文章对设计模式介绍生动形象。但是我相信“一千个读者,一千个
工厂方法模式(Factory Method)工厂方法模式(Factory Method)[Virtual Constructor]意图:定义一个用于创建对象的接口,让子类决定实例化哪一个类,使一个类的实力化延迟到子类。应用:多文档应用管理不同类型的文档。模式结构:心得:面对同一继承体系(Produc
单例模式(Singleton)单例模式(Singleton)意图:保证一个类只有一个实例,并提供一个访问它的全局访问点。应用:Session或者控件的唯一示例等。模式结构:心得:单例模式应该是设计模式中最简单的结构了,它的目的很简单,就是保证自身的实例只有一份。实现这种目的的方式有很多,在Java中
装饰者模式(Decorator)装饰者模式(Decorator)[Wrapper]意图:动态的给一个对象添加一些额外的职责,就增加功能来说,比生成子类更为灵活。应用:给GUI组件添加功能等。模式结构:心得:装饰器(Decorator)和被装饰的对象(ConcreteComponent)拥有统一的接口
抽象工厂模式(Abstract Factory)抽象工厂模式(Abstract Factory)[Kit]意图:提供一个创建一系列相关或相互依赖对象的接口,而无须指定他们具体的类。应用:用户界面工具包。模式结构:心得:工厂方法把生产产品的方式封装起来了,但是一个工厂只能生产一类对象,当一个工厂需要生
桥接模式(Bridge)桥接模式(Bridge)[Handle/Body]意图:将抽象部分与它的实现部分分离,使他们都可以独立的变化。应用:不同系统平台的Windows界面。模式结构:心得:用户所见类体系结构(Window派生)提供了一系列用户的高层操作的接口,但是这些接口的实现是基于具体的底层实现
适配器模式(Adapter)适配器模式(Adapter)[Wrapper]意图:将类的一个接口转换成用户希望的另一个接口,使得原本由于接口不兼容而不能一起工作的类可以一起工作。应用:将图形类接口适配到用户界面组件类中。模式结构:心得:适配器模式一般应用在具有相似接口可复用的条件下。目标接口(Targ
组合模式(Composition)组合模式(Composition)意图:将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。应用:组合图形、文件目录、GUI容器等。模式结构:心得: 用户(Client)通过抽象类(Component)提供的公用接口统一
原型模式(Prototype)原型模式(Prototype)意图:用原型实例制定创建对象的种类,并且通过拷贝这些原型创建新的对象。应用:Java/C#中的Clonable和IClonable接口等。模式结构:心得:原型模式本质上就是对象的拷贝,使用对象拷贝代替对象创建的原因有很多。比如对象的初始化构
什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。