微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Angularjs 1.3 中的$parse实例代码

这次我们来看一下angular的SandBoxing Angular Expressions。关于内置方法的,核心有两块:Lexer和Parser。其中大家对$parse可能更了解一点。好了不多废话,先看Lexer的内部结构:

1.Lexer

rush:js;"> //构造函数 var Lexer = function(options) { this.options = options; }; //原型 Lexer.prototype = { constructor: Lexer,lex: function(){},is: function(){},peek: function(){ /* 返回表达式的下一个位置的数据,如果没有则返回false */ },isNumber: function(){ /* 判断当前表达式是否是一个数字 */ },isWhitespace: function(){/* 判断当前表达式是否是空格符 */},isIdent: function(){/* 判断当前表达式是否是英文字符(包含_和$) */},isExpOperator: function(){/* 判断当时表达式是否是-,+还是数字 */},throwError: function(){ /* 抛出异常 */},readNumber: function(){ /* 读取数字 */},readIdent: function(){ /* 读取字符 */},readString: function(){ /*读取携带''或""的字符串*/ } };

这里指出一点,因为是表达式。所以类似"123"这类的东西,在Lexer看来应该算是数字而非字符串。表达式中的字符串必须使用单引号或者双引号来标识。Lexer的核心逻辑在lex方法中:

rush:js;"> lex: function(text) { this.text = text; this.index = 0; this.tokens = [];

while (this.index < this.text.length) {
var ch = this.text.charat(this.index);
if (ch === '"' || ch === "'") {
/ 尝试判断是否是字符串 /
this.readString(ch);
} else if (this.isNumber(ch) || ch === '.' && this.isNumber(this.peek())) {
/ 尝试判断是否是数字 /
this.readNumber();
} else if (this.isIdent(ch)) {
/ 尝试判断是否是字母 /
this.readIdent();
} else if (this.is(ch,'(){}[].,;:?')) {
/ 判断是否是(){}[].,;:? /
this.tokens.push({index: this.index,text: ch});
this.index++;
} else if (this.isWhitespace(ch)) {
/ 判断是否是空白符 /
this.index++;
} else {
/ 尝试匹配操作运算 /
var ch2 = ch + this.peek();
var ch3 = ch2 + this.peek(2);
var op1 = OPERATORS[ch];
var op2 = OPERATORS[ch2];
var op3 = OPERATORS[ch3];
if (op1 || op2 || op3) {
var token = op3 ? ch3 : (op2 ? ch2 : ch);
this.tokens.push({index: this.index,text: token,operator: true});
this.index += token.length;
} else {
this.throwError('Unexpected next character ',this.index,this.index + 1);
}
}
}
return this.tokens;
}

主要看一下匹配操作运算。这里源码中会调用OPERATORS。看一下OPERATORS:

rush:js;"> var OPERATORS = extend(createMap(),{ '+':function(self,locals,a,b) { a=a(self,locals); b=b(self,locals); if (isDefined(a)) { if (isDefined(b)) { return a + b; } return a; } return isDefined(b) ? b : undefined;},'-':function(self,b) { a=a(self,locals); return (isDefined(a) ? a : 0) - (isDefined(b) ? b : 0); },'*':function(self,b) {return a(self,locals) * b(self,locals);},'/':function(self,locals) / b(self,'%':function(self,locals) % b(self,'===':function(self,locals) === b(self,'!==':function(self,locals) !== b(self,'==':function(self,locals) == b(self,'!=':function(self,locals) != b(self,'<':function(self,locals) < b(self,'>':function(self,locals) > b(self,'<=':function(self,locals) <= b(self,'>=':function(self,locals) >= b(self,'&&':function(self,locals) && b(self,'||':function(self,locals) || b(self,'!':function(self,a) {return !a(self,//Tokenized as operators but parsed as assignment/filters '=':true,'|':true });

可以看到OPERATORS实际上存储的是操作符和操作符函数的键值对。根据操作符返回对应的操作符函数。我们看一下调用例子:

rush:js;"> var _l = new Lexer({}); var a = _l.lex("a = a + 1"); console.log(a);

结合之前的lex方法,我们来回顾下代码执行过程:

1.index指向'a'是一个字母。匹配isIdent成功。将生成的token存入tokens中

2.index指向空格符,匹配isWhitespace成功,同上

3.index指向=,匹配操作运算符成功,同上

4.index指向空格符,匹配isWhitespace成功,同上

5.index指向'a'是一个字母。匹配isIdent成功。同上

7.index指向+,匹配操作运算符成功,同上

8.index指向空格符,匹配isWhitespace成功,同上

9.index指向1,匹配数字成功,同上

以上则是"a = a + 1"的代码执行过程。9步执行结束之后,跳出while循环。刚才我们看到了,每次匹配成功,源码会生成一个token。因为匹配类型的不同,生成出来的token的键值对略有不同:

rush:js;"> number:{ index: start,text: number,constant: true,value: Number(number) },string: { index: start,text: rawString,value: string },ident: { index: start,text: this.text.slice(start,this.index),identifier: true /* 字符表示 */ },;:?': { index: this.index,text: ch },"操作符": { index: this.index,operator: true } //text是表达式,而value才是实际的值

number和string其实都有相对应的真实值,意味着如果我们表达式是2e2,那number生成的token的值value就应该是200。到此我们通过lexer类获得了一个具有token值得数组。从外部看,实际上Lexer是将我们输入的表达式解析成了token json。可以理解为生成了表达式的语法树(AST)。但是目前来看,我们依旧还没有能获得我们定义表达式的结果。那就需要用到parser了。

2.Parser

先看一下Parser的内部结构:

rush:js;"> //构造函数 var Parser = function(lexer,$filter,options) { this.lexer = lexer; this.$filter = $filter; this.options = options; }; //原型 Parser.prototype = { constructor: Parser,parse: function(){},primary: function(){},throwError: function(){ /* 语法抛错 */},peekToken: function(){},peek: function(){/*返回tokens中的第一个成员对象 */},peekAhead: function(){ /* 返回tokens中指定成员对象,否则返回false */},expect: function(){ /* 取出tokens中第一个对象,否则返回false */ },consume: function(){ /* 取出第一个,底层调用expect */ },unaryFn: function(){ /* 一元操作 */},binaryFn: function(){ /* 二元操作 */},identifier: function(){},constant: function(){},statements: function(){},filterChain: function(){},filter: function(){},expression: function(){},assignment: function(){},ternary: function(){},logicalOR: function(){ /* 逻辑或 */},logicalAND: function(){ /* 逻辑与 */ },equality: function(){ /* 等于 */ },relational: function(){ /* 比较关系 */ },additive: function(){ /* 加法,减法 */ },multiplicative: function(){ /* 乘法,除法,求余 */ },unary: function(){ /* 一元 */ },fieldAccess: function(){},objectIndex: function(){},functionCall: function(){},arrayDeclaration: function(){},object: function(){} }

Parser的入口方法是parse,内部执行了statements方法。来看下statements:

0 && !this.peek('}',')',';',']')) statements.push(this.filterChain()); if (!this.expect(';')) { // optimize for the common case where there is only one statement. // Todo(size): maybe we should not support multiple statements? return (statements.length === 1) ? statements[0] : function $parseStatements(self,locals) { var value; for (var i = 0,ii = statements.length; i < ii; i++) { value = statements[i](self,locals); } return value; }; } } }

这里我们将tokens理解为表达式,实际上它就是经过表达式通过lexer转换过来的。statements中。如果表达式不以},),;,]开头,将会执行filterChain方法。当tokens检索完成之后,最后返回了一个$parseStatements方法。其实Parser中很多方法都返回了类似的对象,意味着返回的内容将需要执行后才能得到结果。

看一下filterChain:

rush:js;"> filterChain: function() { /* 针对angular语法的filter */ var left = this.expression(); var token; while ((token = this.expect('|'))) { left = this.filter(left); } return left; }

其中filterChain是针对angular表达式独有的"|"filter写法设计的。我们先绕过这块,进入expression

rush:js;"> expression: function() { return this.assignment(); }

再看assignment:

rush:js;"> assignment: function() { var left = this.ternary(); var right; var token; if ((token = this.expect('='))) { if (!left.assign) { this.throwError('implies assignment but [' + this.text.substring(0,token.index) + '] can not be assigned to',token); } right = this.ternary(); return extend(function $parseAssignment(scope,locals) { return left.assign(scope,right(scope,locals),locals); },{ inputs: [left,right] }); } return left; }

我们看到了ternary方法。这是一个解析三目操作的方法。与此同时,assignment将表达式以=划分成left和right两块。并且两块都尝试执行ternary。

rush:js;"> ternary: function() { var left = this.logicalOR(); var middle; var token; if ((token = this.expect('?'))) { middle = this.assignment(); if (this.consume(':')) { var right = this.assignment(); return extend(function $parseTernary(self,locals) { return left(self,locals) ? middle(self,locals) : right(self,{ constant: left.constant && middle.constant && right.constant }); } } return left; }

在解析三目运算之前,又根据?将表达式划分成left和right两块。左侧再去尝试执行logicalOR,实际上这是一个逻辑与的解析,按照这个执行流程,我们一下有了思路。这有点类似我们一般写三目时。代码的执行情况,比如: 2 > 2 ? 1 : 0。如果把这个当成表达式,那根据?划分left和right,left就应该是2 > 2,right应该就是 1: 0。然后尝试在left看是否有逻辑或的操作。也就是,Parser里面的方法调用的嵌套级数越深,其方法的优先级则越高。好,那我们一口气看看这个最高的优先级在哪?

logicalAND -> equality -> relational -> additive -> multiplicative -> unary

好吧,嵌套级数确实有点多。那么我们看下unary。

rush:js;"> unary: function() { var token; if (this.expect('+')) { return this.primary(); } else if ((token = this.expect('-'))) { return this.binaryFn(Parser.ZERO,token.text,this.unary()); } else if ((token = this.expect('!'))) { return this.unaryFn(token.text,this.unary()); } else { return this.primary(); } }

这边需要看两个主要的方法一个是binaryFn和primay。如果判断是-,则必须通过binaryFn去添加函数。看下binaryFn

rush:js;"> binaryFn: function(left,op,right,isBranching) { var fn = OPERATORS[op]; return extend(function $parseBinaryFn(self,locals) { return fn(self,left,right); },{ constant: left.constant && right.constant,inputs: !isBranching && [left,right] }); }

其中OPERATORS是之前聊Lexer也用到过,它根据操作符存储相应的操作函数。看一下fn(self,right)。而我们随便取OPERATORS中的一个例子:

rush:js;"> '-':function(self,locals); return (isDefined(a) ? a : 0) - (isDefined(b) ? b : 0); }

其中a和b就是left和right,他们其实都是返回的跟之前类似的$parseStatements方法认存储着token中的value。经过事先解析好的四则运算来生成最终答案。其实这就是Parser的基本功能。至于嵌套,我们可以把它理解为js的操作符的优先级。这样就一目了然了。至于primay方法。塔刷选{ ( 对象做进一步的解析过程。

Parser的代码并不复杂,只是函数方法调用密切,让我们再看一个例子:

rush:js;"> var _l = new Lexer({}); var _p = new Parser(_l); var a = _p.parse("1 + 1 + 2"); console.log(a()); //4

我们看下1+1+2生成的token是什么样的:

rush:js;"> [ {"index":0,"text":"1","constant":true,"value":1},{"index":2,"text":"+","operator":true},{"index":4,{"index":6,{"index":8,"text":"2","value":2} ]

Parser根据lexer生成的tokens尝试解析。tokens每一个成员都会生成一个函数,其先后执行逻辑按照用户输入的1+1+2的顺序执行。注意像1和2这类constants为true的token,parser会通过constant生成需要的函数$parseConstant,也就是说1+1+2中的两个1和一个2都是返回$parseConstant函数,通过$parseBinaryFn管理加法逻辑。

rush:js;"> constant: function() { var value = this.consume().value;

return extend(function $parseConstant() {
return value; //这个函数执行之后,就是将value值返回。
},{
constant: true,literal: true
});
},binaryFn: function(left,isBranching) {
var fn = OPERATORS[op];//加法逻辑
return extend(function $parseBinaryFn(self,right);//left和right分别表示生成的对应函数
},right]
});
}

那我们demo中的a应该返回什么函数呢?当然是$parseBinaryFn。其中的left和right分别是1+1的$parseBinaryFn,right就是2的$parseConstant。

再来一个例子:

rush:js;"> var _l = new Lexer({}); var _p = new Parser(_l); var a = _p.parse('{"name": "hello"}'); console.log(a);

这边我们传入一个json,理论上我们执行完a函数,应该返回一个{name: "hello"}的对象。它调用了Parser中的object

rush:js;"> object: function() { var keys = [],valueFns = []; if (this.peekToken().text !== '}') { do { if (this.peek('}')) { // Support trailing commas per ES5.1. break; } var token = this.consume(); if (token.constant) { //把key取出来 keys.push(token.value); } else if (token.identifier) { keys.push(token.text); } else { this.throwError("invalid key",token); } this.consume(':'); //冒号之后,则是值,将值存在valueFns中 valueFns.push(this.expression()); //根据逗号去迭代下一个 } while (this.expect(',')); } this.consume('}'); return extend(function $parSEObjectLiteral(self,locals) { var object = {}; for (var i = 0,ii = valueFns.length; i < ii; i++) { object[keys[i]] = valueFns[i](self,locals); } return object; },{ literal: true,constant: valueFns.every(isConstant),inputs: valueFns }); }

比方我们的例子{"name": "hello"},object会将name存在keys中,hello则会生成$parseConstant函数存在valueFns中,最终返回$parSEObjectLiternal函数

一个例子:

rush:js;"> var a = _p.parse('{"name": "hello"}["name"]');

这个跟上一个例子的差别在于后面尝试去读取name的值,这边则调用parser中的objectIndex方法

rush:js;"> objectIndex: function(obj) { var expression = this.text; var indexFn = this.expression(); this.consume(']'); return extend(function $parSEObjectIndex(self,locals) { var o = obj(self,//parSEObjectLiteral,实际就是obj i = indexFn(self,//$parseConstant,这里就是name v; ensureSafeMemberName(i,expression); if (!o) return undefined; v = ensureSafeObject(o[i],expression); return v; },{ assign: function(self,value,locals) { var key = ensureSafeMemberName(indexFn(self,expression); // prevent overwriting of Function.constructor which would break ensureSafeObject check var o = ensureSafeObject(obj(self,expression); if (!o) obj.assign(self,o = {},locals); return o[key] = value; } }); }

很简单吧,obj[xx]和obj.x类似。大家自行阅读,我们再看一个函数调用的demo

rush:js;"> var _l = new Lexer({}); var _p = new Parser(_l,'',{}); var demo = { "test": function(){ alert("welcome"); } }; var a = _p.parse('test()'); console.log(a(demo));

我们传入一个test的调用。这边调用了parser中的functionCall方法和identifier方法

rush:js;"> identifier: function() { var id = this.consume().text; //Continue reading each `.identifier` unless it is a method invocation while (this.peek('.') && this.peekAhead(1).identifier && !this.peekAhead(2,'(')) { id += this.consume().text + this.consume().text; } return getterFn(id,this.options,this.text); }

看一下getterFn方法

rush:js;"> ... forEach(pathKeys,function(key,index) { ensureSafeMemberName(key,fullExp); var lookupJs = (index // we simply dereference 's' on any .dot notation ? 's' // but if we are first then we check locals first,and if so read it first : '((l&&l.hasOwnProperty("' + key + '"))?l:s)') + '.' + key; if (expensiveChecks || isPossiblyDangerousMemberName(key)) { lookupJs = 'eso(' + lookupJs + ',fe)'; needsEnsureSafeObject = true; } code += 'if(s == null) return undefined;\n' + 's=' + lookupJs + ';\n'; }); code += 'return s;'; /* jshint -W054 */ var evaledFnGetter = new Function('s','l','eso','fe',code); // s=scope,l=locals,eso=ensureSafeObject /* jshint +W054 */ evaledFnGetter.toString = valueFn(code); ...

这是通过字符串创建一个匿名函数方法。我们看下demo的test生成一个什么匿名函数

rush:js;"> function('s','fe'){ if(s == null) return undefined; s=((l&&l.hasOwnProperty("test"))?l:s).test; return s; }

这个匿名函数的意思,需要传入一个上下文,匿名函数通过查找上下文中是否有test属性,如果没有传上下文则直接返回未定义。这也就是为什么我们在生成好的a函数在执行它时需要传入demo对象的原因。最后补一个functionCall

rush:js;"> functionCall: function(fnGetter,contextGetter) { var argsFn = []; if (this.peekToken().text !== ')') { /* 确认调用时有入参 */ do { //形参存入argsFn argsFn.push(this.expression()); } while (this.expect(',')); } this.consume(')'); var expressionText = this.text; // we can safely reuse the array across invocations var args = argsFn.length ? [] : null; return function $parseFunctionCall(scope,locals) { var context = contextGetter ? contextGetter(scope,locals) : isDefined(contextGetter) ? undefined : scope; //或者之前创建生成的匿名函数 var fn = fnGetter(scope,context) || noop; if (args) { var i = argsFn.length; while (i--) { args[i] = ensureSafeObject(argsFn[i](scope,expressionText); } } ensureSafeObject(context,expressionText); ensureSafeFunction(fn,expressionText); // IE doesn't have apply for some native functions //执行匿名函数的时候需要传入上下文 var v = fn.apply ? fn.apply(context,args) : fn(args[0],args[1],args[2],args[3],args[4]); if (args) { // Free-up the memory (arguments of the last function call). args.length = 0; } return ensureSafeObject(v,expressionText); }; }

下面我们看一下$ParseProvider,这是一个基于Lex和Parser函数的angular内置provider。它对scope的api提供了基础支持

rush:js;"> ... return function $parse(exp,interceptorFn,expensiveChecks) { var parsedExpression,oneTime,cacheKey; switch (typeof exp) { case 'string': cacheKey = exp = exp.trim(); var cache = (expensiveChecks ? cacheExpensive : cacheDefault); parsedExpression = cache[cacheKey]; if (!parsedExpression) { if (exp.charat(0) === ':' && exp.charat(1) === ':') { oneTime = true; exp = exp.substring(2); } var parSEOptions = expensiveChecks ? $parSEOptionsExpensive : $parSEOptions; //调用lexer和parser var lexer = new Lexer(parSEOptions); var parser = new Parser(lexer,parSEOptions); parsedExpression = parser.parse(exp); //添加$$watchDelegate,为scope部分提供支持 if (parsedExpression.constant) { parsedExpression.$$watchDelegate = constantWatchDelegate; } else if (oneTime) { //oneTime is not part of the exp passed to the Parser so we may have to //wrap the parsedExpression before adding a $$watchDelegate parsedExpression = wrapSharedExpression(parsedExpression); parsedExpression.$$watchDelegate = parsedExpression.literal ? oneTimeLiteralWatchDelegate : oneTimeWatchDelegate; } else if (parsedExpression.inputs) { parsedExpression.$$watchDelegate = inputsWatchDelegate; } //做相关缓存 cache[cacheKey] = parsedExpression; } return addInterceptor(parsedExpression,interceptorFn); case 'function': return addInterceptor(exp,interceptorFn); default: return addInterceptor(noop,interceptorFn); } };

总结:Lexer和Parser的实现确实让我大开眼界。通过这两个函数,实现了angular自己的语法解析器。逻辑部分还是相对复杂

以上所述是小编给大家介绍的Angularjs 1.3 中的$parse实例代码。编程之家 jb51.cc 收集整理的教程希望能对你有所帮助,如果觉得编程之家不错,可分享给好友!感谢支持

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐