微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Kafka

第1章 Kafka概述

1.1 定义

  Kafka是一个分布式的基于发布/订阅模式的消息队列(Message Queue),主要应用于大数据实时处理领域。

1.2 消息队列

1.2.1 传统消息队列的应用场景

  使用消息队列的好处

    1)解耦

      允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。

    2)可恢复性

      系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。

    3)缓冲

      有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。

    4)灵活性 & 峰值处理能力

      在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。

    5)异步通信

      很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

1.2.2 消息队列的两种模式

  (1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)

    消息生产者生产消息发送到Queue中,然后消息消费者从Queue中取出并且消费消息。

    消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息。Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。

  (2)发布/订阅模式(一对多,消费者消费数据之后不会清除消息)

    消息生产者(发布)将消息发布到topic中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到topic的消息会被所有订阅者消费。

1.3 Kafka基础架构

  1)Producer :消息生产者,就是向kafka broker发消息的客户端;

  2)Consumer :消息消费者,向kafka broker取消息的客户端;

  3)Consumer Group (CG):消费者组,由多个consumer组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅

  4broker :一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。

  5)Topic :可以理解为一个队列,生产者和消费者面向的都是一个topic

  6)Partition:为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列;

  7)Replica:副本,为保证集群中的某个节点发生故障时,该节点上的partition数据不丢失,且kafka仍然能够继续工作,kafka提供了副本机制,一个topic的每个分区都有若干个副本,一个leader和若干个follower

  8)leader每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是leader

  9)follower:每个分区多个副本中的“从”,实时从leader中同步数据,保持和leader数据的同步。leader发生故障时,某个follower会成为新的leader

第2章 Kafka快速入门

2.1 安装部署

2.1.1 集群规划

hadoop102  hadoop103 hadoop104
zk zk zk
kafka kafka kafka

2.1.2 jar包下载

  http://kafka.apache.org/downloads.html 

  本博客中的所需资料下载:https://pan.baidu.com/s/1NPZ0KRZnzSa2NkO0_gABHw   提取码:yuan 

2.1.3 集群部署

  1)解压安装包

tar -zxvf kafka_2.11-2.4.1.tgz -C /opt/module/

  2)修改解压后的文件名称

mv kafka_2.11-2.4.1.tgz kafka

  3)在/opt/module/kafka目录下创建logs文件

mkdir logs

  4)修改配置文件,输入以下内容

cd config/
vim server.properties
#broker的全局唯一编号,不能重复
broker.id=0
#删除topic功能使能,当前版本此配置认为true,已从配置文件移除
delete.topic.enable=true
#处理网络请求的线程数量
num.network.threads=3
#用来处理磁盘IO的线程数量
num.io.threads=8
#发送套接字的缓冲区大小
socket.send.buffer.bytes=102400
#接收套接字的缓冲区大小
socket.receive.buffer.bytes=102400
#请求套接字的缓冲区大小
socket.request.max.bytes=104857600
#kafka运行日志存放的路径
log.dirs=/opt/module/kafka/logs
#topic在当前broker上的分区个数
num.partitions=1
#用来恢复和清理data下数据的线程数量
num.recovery.threads.per.data.dir=1
#segment文件保留的最长时间,超时将被删除
log.retention.hours=168
#配置连接Zookeeper集群地址
zookeeper.connect=hadoop102:2181,hadoop103:2181,hadoop104:2181

  5)配置环境变量(每个节点都配一下)

sudo vim /etc/profile.d/my_env.sh
#KAFKA_HOME
export KAFKA_HOME=/opt/module/kafka
export PATH=$PATH:$KAFKA_HOME/bin
source /etc/profile.d/my_env.sh

  6)分发安装包

xsync kafka/

  7)分别在hadoop103和hadoop104上修改配置文件/opt/module/kafka/config/server.properties中的broker.id=1、broker.id=2,注:broker.id不得重复

  8)启动集群,依次在hadoop102、hadoop103、hadoop104节点上启动kafka(注意,启动之前先启动Zookeeper集群)

kafka-server-start.sh -daemon config/server.properties

  9)关闭集群

kafka-server-stop.sh stop

  10)kafka群起脚本

#!/bin/bash
function start()
{
        for host in hadoop102 hadoop103 hadoop104
        do
                echo "----------------------------------$host kafka $zkStatus----------------------------------------"
                ssh $host "/opt/module/kafka/bin/kafka-server-$zkStatus.sh -daemon /opt/module/kafka/config/server.properties"
        done
}
function stop()
{
        for host in hadoop102 hadoop103 hadoop104
        do
                echo "----------------------------------$host kafka $zkStatus----------------------------------------"
                ssh $host "/opt/module/kafka/bin/kafka-server-$zkStatus.sh $zkStatus"
        done
}
zkStatus="" if [ $# -ne 1 ] then echo "输入参数个数错误!!!" exit fi case $1 in "start") zkStatus=start start ;; "stop") zkStatus=stop stop ;; *) echo "输入参数格式错误!!!" exit ;; esac

2.2 Kafka命令行操作

  1)查看当前服务器中的所有topic

kafka-topics.sh --zookeeper hadoop102:2181 --list

  2)创建topic

kafka-topics.sh --zookeeper hadoop102:2181 --create --replication-factor 3 --partitions 1 --topic first

选项说明:
--topic 定义topic名
--replication-factor  定义副本数
--partitions  定义分区数

  3)删除topic

kafka-topics.sh --zookeeper hadoop102:2181 --delete --topic first

需要server.properties中设置delete.topic.enable=true否则只是标记删除

  4)发送消息

kafka-console-producer.sh --broker-list hadoop102:9092 --topic first

  5)消费消息

kafka-console-consumer.sh --zookeeper hadoop102:2181 --topic first
kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --from-beginning --topic first

--from-beginning:会把主题中以往所有的数据都读取出来。

  6)查看某个Topic的详情

kafka-topics.sh --zookeeper hadoop102:2181 --describe --topic first

  7)修改分区数

kafka-topics.sh --zookeeper hadoop102:2181 --alter --topic first --partitions 6

第3章 Kafka架构深入

3.1 Kafka工作流程及文件存储机制 

  Kafka中消息是以topic进行分类的,生产者生产消息,消费者消费消息,都是面向topic的。

  topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件,该log文件中存储的就是producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,且每条数据都有自己的offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个offset,以便出错恢复时,从上次的位置继续消费。

  由于生产者生产的消息会不断追加到log文件末尾,为防止log文件过大导致数据定位效率低下,Kafka采取了分片索引机制,将每个partition分为多个segment。每个segment对应两个文件——“.index”文件和“.log”文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号。例如,first这个topic有三个分区,则其对应的文件夹为first-0,first-1,first-2。

00000000000000000000.index
00000000000000000000.log

00000000000000170410.index
00000000000000170410.log

00000000000000239430.index
00000000000000239430.log

  index和log文件以当前segment的第一条消息的offset命名。下图为index文件和log文件的结构示意图。

  “.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中message的物理偏移地址。

3.2 Kafka生产者

3.2.1 分区策略

  1)分区的原因

  (1)方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;

  (2)可以提高并发,因为可以以Partition为单位读写了。

  2分区的原则

    我们需要将producer发送的数据封装成一个ProducerRecord对象。

  (1)指明 partition 的情况下,直接将指明的值直接作为 partiton 值;

  (2)没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;

  (3)既没有 partition 值又没有 key 值的情况下,第一次调用随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。

3.2.2 数据可靠性保证

  为保证producer发送的数据,能可靠的发送到指定的topic,topic的每个partition收到producer发送的数据后,都需要向producer发送ack(ackNowledgement确认收到),如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。

  1)副本数据同步策略

方案

优点

缺点

半数以上完成同步,就发送ack

延迟低

选举新的leader时,容忍n台节点的故障,需要2n+1个副本

全部完成同步,才发送ack

选举新的leader时,容忍n台节点的故障,需要n+1个副本

延迟高

    Kafka选择了第二种方案,原因如下:

      1.同样为了容忍n台节点的故障,第一种方案需要2n+1个副本,而第二种方案只需要n+1个副本,而Kafka的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。

      2.虽然第二种方案的网络延迟会比较高,但网络延迟对Kafka的影响较小。

  2)ISR

    采用第二种方案之后,设想以下情景:leader收到数据,所有follower都开始同步数据,但有一个follower,因为某种故障,迟迟不能与leader进行同步,那leader就要一直等下去,直到它完成同步,才能发送ack。这个问题怎么解决呢?

    leader维护了一个动态的in-sync replica set (ISR),意为和leader保持同步的follower集合。当ISR中的follower完成数据的同步之后,leader就会给producer发送ack。如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。leader发生故障之后,就会从ISR中选举新的leader

  3)ack应答机制

    对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等ISR中的follower全部接收成功。

    所以Kafka为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置。

    acks参数配置:

      acks

      0:producer不等待broker的ack,这一操作提供了一个最低的延迟,broker一接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据

      1:producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据

      -1(all):producer等待broker的ack,partition的leader和follower全部落盘成功后才返回ack。但是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复

  4)故障处理细节

    LEO:指的是每个副本最大的offset;

    HW:指的是消费者能见到的最大的offset,ISR队列中最小的LEO。

  (1)follower故障

    follower发生故障后会被临时踢出ISR,待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步。等该follower的LEO大于等于该Partition的HW,即follower追上leader之后,就可以重新加入ISR了。

  (2)leader故障

    leader发生故障之后,会从ISR中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。

    注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

3.3 Kafka消费者

3.3.1 消费方式

  consumer采用pull(拉)模式从broker中读取数据。

  push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据consumer的消费能力以适当的速率消费消息。

  pull模式不足之处是,如果kafka没有数据,消费者可能会陷入循环中,一直返回空数据。针对这一点,Kafka的消费者在消费数据时会传入一个时长参数timeout,如果当前没有数据可供消费,consumer会等待一段时间之后再返回,这段时长即为timeout。

3.3.2 分区分配策略

  一个consumer group中有多个consumer,一个 topic有多个partition,所以必然会涉及到partition的分配问题,即确定那个partition由哪个consumer来消费。

  Kafka有两种分配策略,一是RoundRobin,一是Range。

  1)RoundRobin

  2)Range

3.3.3 offset的维护

  由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。

  Kafka 0.9版本之前,consumer认将offset保存在Zookeeper中,从0.9版本开始,consumer认将offset保存在Kafka一个内置的topic中,该topic为__consumer_offsets

  1)修改配置文件consumer.properties,修改完成后分发至各个节点

exclude.internal.topics=false

  2)读取offset

    0.11.0.0之前版本:

kafka-console-consumer.sh --topic __consumer_offsets --zookeeper hadoop102:2181 --formatter "kafka.coordinator.GroupMetadataManager\$Offsetsmessageformatter" --consumer.config config/consumer.properties --from-beginning

    0.11.0.0之后版本(含):

kafka-console-consumer.sh --topic __consumer_offsets --bootstrap-server hadoop102:9092 --formatter "kafka.coordinator.group.GroupMetadataManager\$Offsetsmessageformatter" --consumer.config config/consumer.properties --from-beginning

3.3.4 消费者组案例

  1)需求:测试同一个消费者组中的消费者,同一时刻只能有一个消费者消费。

  2)案例实操

  (1)在hadoop102、hadoop103上修改/opt/module/kafka/config/consumer.properties配置文件中的group.id属性为任意组名。

  (2)在hadoop102、hadoop103上分别启动消费者

kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first --consumer.config config/consumer.properties
kafka-console-consumer.sh --bootstrap-server hadoop103:9092 --topic first --consumer.config config/consumer.properties

  (3)在hadoop104上启动生产者

kafka-console-producer.sh --broker-list hadoop104:9092 --topic first

  (4)查看hadoop102和hadoop103的接收者,同一时刻只有一个消费者接收到消息。

3.4 Kafka 高效读写数据

  1)顺序写磁盘

    Kafka的producer生产数据,要写入到log文件中,写的过程是一直追加到文件末端,为顺序写。官网有数据表明,同样的磁盘,顺序写能到600M/s,而随机写只有100K/s。这与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。

  2)零复制技术

3.5 Zookeeper在Kafka中的作用

  Kafka集群中有一个broker会被选举为Controller,负责管理集群broker的上下线,所有topic的分区副本分配和leader选举等工作。Controller的管理工作都是依赖于Zookeeper的。

  以下为partition的leader选举过程:

第4章 Kafka API

4.1 Producer API

4.1.1 消息发送流程

  Kafka的Producer发送消息采用的是异步发送的方式。在消息发送的过程中,涉及到了两个线程——main线程和Sender线程,以及一个线程共享变量——RecordAccumulator。main线程将消息发送给RecordAccumulator,Sender线程不断从RecordAccumulator中拉取消息发送到Kafka broker。

  相关参数:

    batch.size只有数据积累到batch.size之后,sender才会发送数据。

    linger.ms如果数据迟迟未达到batch.size,sender等待linger.time之后就会发送数据。

4.1.2 异步发送API

  1)导入依赖

<dependency>
  <groupId>org.apache.kafka</groupId>
  <artifactId>kafka-clients</artifactId>
  <version>2.1.1</version>
</dependency>

  2)编写代码

    需要用到的类:

      KafkaProducer:需要创建一个生产者对象,用来发送数据

      ProducerConfig获取所需的一系列配置参数

      ProducerRecord:每条数据都要封装成一个ProducerRecord对象

    1.不带回调函数的API

package com.yuange.kafka;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;

public class CustomProducer {
    public static void main(String[] args) {
        Properties properties = new Properties();
        //kafka集群
        properties.put("bootstrap.servers", "hadoop102:9092");

        properties.put("acks","all");
        //重试次数
        properties.put("retries",1);
        //批次大小
        properties.put("batch.size", 16384);
        //等待时间
        properties.put("linger.ms", 1);
        //RecordAccumulator缓冲区大小
        properties.put("buffer.memory", 33554432);
        //序列化
        properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        Producer<String, String> producer = new KafkaProducer<String,String>(properties);

        for (int i = 0; i < 5; i++) {
            producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i)));
        }

        producer.close();
    }
}

    2.带回调函数的API

      回调函数会在producer收到ack时调用,为异步调用,该方法有两个参数,分别是RecordMetadata和Exception,如果Exception为null,说明消息发送成功,如果Exception不为null,说明消息发送失败。

      注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。

package com.yuange.kafka;

import org.apache.kafka.clients.producer.*;

import java.util.Properties;
import java.util.concurrent.ExecutionException;

public class CustomProducerToAnsy {
    public static void main(String[] args) throws ExecutionException, InterruptedException {

        Properties props = new Properties();

        props.put("bootstrap.servers", "hadoop102:9092");//kafka集群,broker-list

        props.put("acks", "all");

        props.put("retries", 1);//重试次数

        props.put("batch.size", 16384);//批次大小

        props.put("linger.ms", 1);//等待时间

        props.put("buffer.memory", 33554432);//RecordAccumulator缓冲区大小

        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        Producer<String, String> producer = new KafkaProducer<String, String>(props);

        for (int i = 0; i < 100; i++) {
            producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i)), new Callback() {
                //回调函数,该方法会在Producer收到ack时调用,为异步调用
                @Override
                public void onCompletion(RecordMetadata Metadata, Exception exception) {
                    if (exception == null) {
                        System.out.println("success->" + Metadata.offset());
                    } else {
                        exception.printstacktrace();
                    }
                }
            });
        }
        producer.close();
    }
}

4.1.3 分区器

  1. 认的分区器 DefaultPartitioner
  2. 自定义分区器

4.1.4 同步发送API

  同步发送的意思就是,一条消息发送之后,会阻塞当前线程,直至返回ack。

  由于send方法返回的是一个Future对象,根据Futrue对象的特点,我们也可以实现同步发送的效果,只需在调用Future对象的get方发即可。

package com.yuange.kafka;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;
import java.util.concurrent.ExecutionException;

public class CustomProducerSync {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        Properties props = new Properties();

        props.put("bootstrap.servers", "hadoop102:9092");//kafka集群,broker-list

        props.put("acks", "all");

        props.put("retries", 1);//重试次数

        props.put("batch.size", 16384);//批次大小

        props.put("linger.ms", 1);//等待时间

        props.put("buffer.memory", 33554432);//RecordAccumulator缓冲区大小

        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

        Producer<String, String> producer = new KafkaProducer<>(props);
        for (int i = 0; i < 100; i++) {
            producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), Integer.toString(i))).get();
        }
        producer.close();
    }
}

4.2 Consumer API

  Consumer消费数据时的可靠性是很容易保证的,因为数据在Kafka中是持久化的,故不用担心数据丢失问题。由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费,所以offset的维护是Consumer消费数据是必须考虑的问题。

4.2.1 自动提交offset

  1)导入依赖

<dependency>
  <groupId>org.apache.kafka</groupId>
  <artifactId>kafka-clients</artifactId>
  <version>2.1.1</version>
</dependency>

  2)编写代码

    需要用到的类:

      KafkaConsumer:需要创建一个消费者对象,用来消费数据

      ConsumerConfig获取所需的一系列配置参数

      ConsuemrRecord:每条数据都要封装成一个ConsumerRecord对象

    为了使我们能够专注于自己的业务逻辑,Kafka提供了自动提交offset的功能。 

    自动提交offset的相关参数:

      enable.auto.commit是否开启自动提交offset功能

      auto.commit.interval.ms自动提交offset的时间间隔

    以下为自动提交offset的代码

package com.yuange.kafka;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.util.Arrays;
import java.util.Properties;

public class CustomConsumer {

public static void main(String[] args) {

        Properties props = new Properties();

        props.put("bootstrap.servers", "hadoop102:9092");

        props.put("group.id", "test");

        props.put("enable.auto.commit", "true");

        props.put("auto.commit.interval.ms", "1000");

        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

        consumer.subscribe(Arrays.asList("first"));

        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(100);
            for (ConsumerRecord<String, String> record : records)
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
        }
    }
}

4.2.2 重置Offset

  auto.offset.rest = earliest | latest |none

4.2.3 手动提交offset

  虽然自动提交offset十分简介便利,但由于其是基于时间提交的,开发人员难以把握offset提交的时机。因此Kafka还提供了手动提交offset的API。

  手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。两者的相同点是,都会将本次poll的一批数据最高的偏移量提交;不同点是,commitSync阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而commitAsync则没有失败重试机制,故有可能提交失败。

  1)同步提交offset

    由于同步提交offset有失败重试机制,故更加可靠,以下为同步提交offset的示例。

package com.yuange.kafka;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

public class CustomCustomer {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", "hadoop102:9092");
        props.setProperty("group.id", "test");
        props.setProperty("enable.auto.commit", "false");
        props.setProperty("auto.commit.interval.ms", "1000");
        props.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(props);
        consumer.subscribe(Arrays.asList("first"));
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
            for (ConsumerRecord<String, String> record : records)
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
                //同步提交,若失败则重试
                consumer.commitAsync();
        }
    }
}

  2)异步提交offset

    虽然同步提交offset更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会收到很大的影响。因此更多的情况下,会选用异步提交offset的方式。

    以下为异步提交offset的示例:

package com.yuange.kafka;

import org.apache.kafka.clients.consumer.*;
import org.apache.kafka.common.TopicPartition;

import java.time.Duration;
import java.util.Arrays;
import java.util.Map;
import java.util.Properties;

public class CustomCustomerAsync {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", "hadoop102:9092");
        props.setProperty("group.id", "test");
        //关闭自动提交
        props.setProperty("enable.auto.commit", "true");
        props.setProperty("auto.commit.interval.ms", "1000");
        props.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(props);
        consumer.subscribe(Arrays.asList("first"));
        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
            for (ConsumerRecord<String, String> record : records)
                System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
            //异步提交
            consumer.commitAsync(new OffsetCommitCallback() {
                @Override
                public void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception exception) {
                    if (exception != null) {
                        System.err.println("Commit Failed for" + offsets);
                    }
                }
            });
        }
    }
}

  3) 数据漏消费和重复消费分析

    无论是同步提交还是异步提交offset,都有可能会造成数据的漏消费或者重复消费。先提交offset后消费,有可能造成数据的漏消费;而先消费后提交offset,有可能会造成数据的重复消费。

4.3 自定义Interceptor

4.3.1 拦截器原理

  Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑。

  对于producer而言,interceptor使得用户在消息发送前以及producer回调逻辑前有机会对消息做一些定制化需求,比如修改消息等。同时,producer允许用户指定多个interceptor按序作用于同一条消息从而形成一个拦截链(interceptor chain)。Intercetpor的实现接口是org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括

  (1)configure(configs)

    获取配置信息和初始化数据时调用

  (2)onSend(ProducerRecord):

    该方法封装进KafkaProducer.send方法中,即它运行在用户主线程中。Producer确保在消息被序列化以及计算分区前调用方法用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的topic和分区,否则会影响目标分区的计算。

  (3)onAckNowledgement(RecordMetadata, Exception):

    该方法会在消息从RecordAccumulator成功发送到Kafka broker之后,或者在发送过程中失败时调用。并且通常都是在producer回调逻辑触发之前。onAckNowledgement运行在producer的IO线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢producer的消息发送效率。

  (4)close:

    关闭interceptor,主要用于执行一些资源清理工作

  如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外倘若指定了多个interceptor,则producer将按照指定顺序调用它们,并仅仅是捕获每个interceptor可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。

4.3.2 拦截器案例

  1)需求:

    实现一个简单的双interceptor组成的拦截链。第一个interceptor会在消息发送前将时间戳信息加到消息value的最前部;第二个interceptor会在消息发送后更新成功发送消息数或失败发送消息数。

  2)案例实操

  (1)增加时间戳拦截

package com.yuange.kafka.interceptor;

import org.apache.kafka.clients.producer.ProducerInterceptor;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

import java.util.Map;

public class TimeInterceptor implements ProducerInterceptor<String, String> {
@Override
public void configure(Map<String, ?> configs) {
}

@Override
public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
// 创建一个新的record,把时间戳写入消息体的最前部
return new ProducerRecord(record.topic(), record.partition(), record.timestamp(), record.key(), System.currentTimeMillis() + "," + record.value().toString());
}

@Override
public void onAckNowledgement(RecordMetadata Metadata, Exception exception) {
}

@Override
public void close() {
}
}

  (2)统计发送消息成功和发送失败消息数,并在producer关闭时打印这两个计数器

package com.yuange.kafka.interceptor;

import java.util.Map;
import org.apache.kafka.clients.producer.ProducerInterceptor;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

public class CounterInterceptor implements ProducerInterceptor<String, String>{
private int errorCounter = 0;
private int successCounter = 0;

@Override
public void configure(Map<String, ?> configs) {
}

@Override
public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
return record;
}

@Override
public void onAckNowledgement(RecordMetadata Metadata, Exception exception) {
// 统计成功和失败的次数
if (exception == null) {
successCounter++;
} else {
errorCounter++;
}
}

@Override
public void close() {
// 保存结果
System.out.println("Successful sent: " + successCounter);
System.out.println("Failed sent: " + errorCounter);
}
}

  (3)producer主程序

package com.yuange.kafka.interceptor;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.ArrayList;
import java.util.List;
import java.util.Properties;

public class InterceptorProducer {
public static void main(String[] args) throws Exception {
// 1 设置配置信息
Properties props = new Properties();
props.put("bootstrap.servers", "hadoop102:9092");
props.put("acks", "all");
props.put("retries", 3);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");

// 2 构建拦截
List<String> interceptors = new ArrayList<>();
interceptors.add("com.yuange.kafka.interceptor.TimeInterceptor");
interceptors.add("com.yuange.kafka.interceptor.CounterInterceptor");
props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONfig, interceptors);

String topic = "first";
Producer<String, String> producer = new KafkaProducer<>(props);

// 3 发送消息
for (int i = 0; i < 10; i++) {
ProducerRecord<String, String> record = new ProducerRecord<>(topic, "message" + i);
producer.send(record);
}

// 4 一定要关闭producer,这样才会调用interceptor的close方法
producer.close();
}
}

  3)测试

  (1)在kafka上启动消费者,然后运行客户端java程序。

kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --from-beginning --topic first

5章 Kafka监控

5.1 Kafka Eagle

  1.修改kafka启动命令,修改kafka-server-start.sh命令中

if [ "x$KAFKA_HEAP_OPTS" = "x" ]; then
    export KAFKA_HEAP_OPTS="-Xmx1G -xms1G"
fi

  为

if [ "x$KAFKA_HEAP_OPTS" = "x" ]; then
    export KAFKA_HEAP_OPTS="-server -xms2G -Xmx2G -XX:PermSize=128m -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:ParallelGCThreads=8 -XX:ConcGCThreads=5 -XX:InitiatingHeapOccupancyPercent=70"
    export JMX_PORT="9999"
    #export KAFKA_HEAP_OPTS="-Xmx1G -xms1G"
fi

    注意:修改之后在启动Kafka之前要分发之其他节点

  2.上传压缩包kafka-eagle-bin-1.3.7.tar.gz到集群/opt/software目录

  3.解压到本地

tar -zxvf kafka-eagle-bin-1.3.7.tar.gz

  4.进入刚才解压的目录

  5.将kafka-eagle-web-1.3.7-bin.tar.gz解压至/opt/module

tar -zxvf kafka-eagle-web-1.3.7-bin.tar.gz -C /opt/module/

  6.修改名称

mv kafka-eagle-web-1.3.7 eagle

  7.给启动文件执行权限

chmod 777 ke.sh

  8.修改配置文件

######################################
# multi zookeeper&kafka cluster list
######################################
kafka.eagle.zk.cluster.alias=cluster1
cluster1.zk.list=hadoop102:2181,hadoop103:2181,hadoop104:2181

######################################
# kafka offset storage
######################################
cluster1.kafka.eagle.offset.storage=kafka

######################################
# enable kafka metrics
######################################
kafka.eagle.metrics.charts=true
kafka.eagle.sql.fix.error=false

######################################
# kafka jdbc driver address
######################################
kafka.eagle.driver=com.MysqL.jdbc.Driver
kafka.eagle.url=jdbc:MysqL://hadoop102:3306/ke?useUnicode=true&characterEncoding=UTF-8&zeroDateTimeBehavior=convertToNull
kafka.eagle.username=root
kafka.eagle.password=000000

  9.添加环境变量

export KE_HOME=/opt/module/eagle
export PATH=$PATH:$KE_HOME/bin

  10.启动(启动之前需要先启动zookeeper集群以及kafka集群)

ke.sh start

  11.登录页面查看监控数据:http://192.168.1.102:8048/ke ,输入账号:admin,密码:123456

6章 Flume对接Kafka

  1)在/opt/module/flume/job下新建配置flume(flume-kafka.conf)

# define
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F -c +0 /opt/module/datas/flume.log
a1.sources.r1.shell = /bin/bash -c

# sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k1.kafka.topic = first
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1

# channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

  2 启动kafkaIDEA消费者

kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

  3 进入flume根目录下,启动flume

bin/flume-ng agent -c conf/ -n a1 -f job/flume-kafka.conf

  4  /opt/module/data/flume.log里追加数据,查看kafka消费者消费情况

echo ll >> /opt/module/datas/flume.log
ll >> /opt/module/datas/flume.log

第7章 Kafka面试题

7.1 面试问题

  1.Kafka中的ISR(InSyncRepli)、OSR(OutSyncRepli)、AR(AllRepli)代表什么?

    ISR:与leader保持同步的follower集合

    AR:分区的所有副本

  2.Kafka中的HW、LEO等分别代表什么?

    LEO:每个副本的最后条消息的offset

    HW:一个分区中所有副本最小的offset

  3.Kafka中是怎么体现消息顺序性的?

    每个分区内,每条消息都有一个offset,故只能保证分区内有序。

  4.Kafka中的分区器、序列化器、拦截器是否了解?它们之间的处理顺序是什么?

    拦截器 -> 序列化器 -> 分区器

  5.Kafka生产者客户端的整体结构是什么样子的?使用了几个线程来处理?分别是什么?

  6.“消费组中的消费者个数如果超过topic的分区,那么就会有消费者消费不到数据”这句话是否正确?

    正确

  7.消费者提交消费位移时提交的是当前消费到的最新消息的offset还是offset+1?

    offset+1

  8.有哪些情形会造成重复消费?

  9.那些情景会造成消息漏消费?

    先提交offset,后消费,有可能造成数据的重复

  10.当你使用kafka-topics.sh创建(删除)了一个topic之后,Kafka背后会执行什么逻辑?

      1)会在zookeeper中的/brokers/topics节点下创建一个新的topic节点,如:/brokers/topics/first

      2)触发Controller的监听程序

      3)kafka Controller 负责topic的创建工作,并更新Metadata cache

  11.topic的分区数可不可以增加?如果可以怎么增加?如果不可以,那又是为什么?

    可以增加

bin/kafka-topics.sh --zookeeper localhost:2181/kafka --alter --topic topic-config --partitions 3

  12.topic的分区数可不可以减少?如果可以怎么减少?如果不可以,那又是为什么?

    不可以减少,现有的分区数据难以处理。

  13.Kafka有内部的topic吗?如果有是什么?有什么所用?

    __consumer_offsets,保存消费者offset

  14.Kafka分区分配的概念?

    一个topic有多个分区,一个消费者组有多个消费者,故需要将分区分配个消费者(roundrobin、range)

  15.简述Kafka的日志目录结构?

    每个分区对应一个文件夹,文件夹的命名为topic-0,topic-1,内部为.log和.index文件

  16.如果我指定了一个offset,Kafka Controller怎么查找到对应的消息?

  17.聊一聊Kafka Controller的作用?

     负责管理集群broker的上下线,所有topic的分区副本分配和leader选举等工作。

  18.Kafka中有那些地方需要选举?这些地方的选举策略又有哪些?

    partition leader(ISR),controller(先到先得)

  19.失效副本是指什么?有那些应对措施?

    不能及时与leader同步,暂时踢出ISR,等其追上leader之后再重新加入

  20.Kafka的哪些设计让它有如此高的性能

    分区,顺序写磁盘,0-copy

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐