微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – 使用潜在的语义分析进行聚类

假设我有一个文档语料库,我在其上运行LSA算法.如何使用应用SVD后获得的最终矩阵来语义聚类出现在我的文档语料库中的所有单词?维基百科说LSA可用于查找术语之间的关系. Python中是否有可用的库可以帮助我完成基于LSA语义聚类单词的任务?

解决方法:

尝试gensim(http://radimrehurek.com/gensim/index.html),只需按照以下说明安装:http://radimrehurek.com/gensim/install.html

那么这里是一个代码示例:

from gensim import corpora, models, similarities

documents = ["Human machine interface for lab abc computer applications",
             "A survey of user opinion of computer system response time",
             "The EPS user interface management system",
             "System and human system engineering testing of EPS",
             "Relation of user perceived response time to error measurement",
             "The generation of random binary unordered trees",
             "The intersection graph of paths in trees",
             "Graph minors IV Widths of trees and well quasi ordering",
             "Graph minors A survey"]

# remove common words and tokenize
stoplist = set('for a of the and to in'.split())
texts = [[word for word in document.lower().split() if word not in stoplist]
         for document in documents]

# remove words that appear only once
all_tokens = sum(texts, [])
tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1)

texts = [[word for word in text if word not in tokens_once] for text in texts]

dictionary = corpora.Dictionary(texts)
corp = [dictionary.doc2bow(text) for text in texts]

# extract 400 LSI topics; use the default one-pass algorithm
lsi = models.lsimodel.LsiModel(corpus=corp, id2word=dictionary, num_topics=400)

# print the most contributing words (both positively and negatively) for each of the first ten topics
lsi.print_topics(10)

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐