# 时间序列和常用操作 import pandas as pd # 每隔五天--5D pd.date_range(start = '20200101',end = '20200131',freq = '5D') ''' DatetimeIndex(['2020-01-01', '2020-01-06', '2020-01-11', '2020-01-16', '2020-01-21', '2020-01-26', '2020-01-31'], dtype='datetime64[ns]', freq='5D') ''' # 每隔一周--W pd.date_range(start = '20200301',end = '20200331',freq = 'W') ''' DatetimeIndex(['2020-03-01', '2020-03-08', '2020-03-15', '2020-03-22', '2020-03-29'], dtype='datetime64[ns]', freq='W-SUN') ''' # 间隔两天,五个数据 pd.date_range(start = '20200301',periods = 5,freq = '2D') # periods 几个数据 ,freq 间隔时期,两天 ''' DatetimeIndex(['2020-03-01', '2020-03-03', '2020-03-05', '2020-03-07', '2020-03-09'], dtype='datetime64[ns]', freq='2D') ''' # 间隔三小时,八个数据 pd.date_range(start = '20200301',periods = 8,freq = '3H') ''' DatetimeIndex(['2020-03-01 00:00:00', '2020-03-01 03:00:00', '2020-03-01 06:00:00', '2020-03-01 09:00:00', '2020-03-01 12:00:00', '2020-03-01 15:00:00', '2020-03-01 18:00:00', '2020-03-01 21:00:00'], dtype='datetime64[ns]', freq='3H') ''' # 三点开始,十二个数据,间隔一分钟 pd.date_range(start = '202003010300',periods = 12,freq = 'T') ''' DatetimeIndex(['2020-03-01 03:00:00', '2020-03-01 03:01:00', '2020-03-01 03:02:00', '2020-03-01 03:03:00', '2020-03-01 03:04:00', '2020-03-01 03:05:00', '2020-03-01 03:06:00', '2020-03-01 03:07:00', '2020-03-01 03:08:00', '2020-03-01 03:09:00', '2020-03-01 03:10:00', '2020-03-01 03:11:00'], dtype='datetime64[ns]', freq='T') ''' # 每个月的最后一天 pd.date_range(start = '20190101',end = '20191231',freq = 'M') ''' DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30', '2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31', '2019-09-30', '2019-10-31', '2019-11-30', '2019-12-31'], dtype='datetime64[ns]', freq='M') ''' # 间隔一年,六个数据,年末最后一天 pd.date_range(start = '20190101',periods = 6,freq = 'A') ''' DatetimeIndex(['2019-12-31', '2020-12-31', '2021-12-31', '2022-12-31', '2023-12-31', '2024-12-31'], dtype='datetime64[ns]', freq='A-DEC') ''' # 间隔一年,六个数据,年初最后一天 pd.date_range(start = '20200101',periods = 6,freq = 'AS') ''' DatetimeIndex(['2020-01-01', '2021-01-01', '2022-01-01', '2023-01-01', '2024-01-01', '2025-01-01'], dtype='datetime64[ns]', freq='AS-JAN') ''' # 使用 Series 对象包含时间序列对象,使用特定索引 data = pd.Series(index = pd.date_range(start = '20200321',periods = 24,freq = 'H'),data = range(24)) ''' 2020-03-21 00:00:00 0 2020-03-21 01:00:00 1 2020-03-21 02:00:00 2 2020-03-21 03:00:00 3 2020-03-21 04:00:00 4 2020-03-21 05:00:00 5 2020-03-21 06:00:00 6 2020-03-21 07:00:00 7 2020-03-21 08:00:00 8 2020-03-21 09:00:00 9 2020-03-21 10:00:00 10 2020-03-21 11:00:00 11 2020-03-21 12:00:00 12 2020-03-21 13:00:00 13 2020-03-21 14:00:00 14 2020-03-21 15:00:00 15 2020-03-21 16:00:00 16 2020-03-21 17:00:00 17 2020-03-21 18:00:00 18 2020-03-21 19:00:00 19 2020-03-21 20:00:00 20 2020-03-21 21:00:00 21 2020-03-21 22:00:00 22 2020-03-21 23:00:00 23 Freq: H, dtype: int64 ''' # 查看前五个数据 data[:5] ''' 2020-03-21 00:00:00 0 2020-03-21 01:00:00 1 2020-03-21 02:00:00 2 2020-03-21 03:00:00 3 2020-03-21 04:00:00 4 Freq: H, dtype: int64 ''' # 三分钟重采样,计算均值 data.resample('3H').mean() ''' 2020-03-21 00:00:00 1 2020-03-21 03:00:00 4 2020-03-21 06:00:00 7 2020-03-21 09:00:00 10 2020-03-21 12:00:00 13 2020-03-21 15:00:00 16 2020-03-21 18:00:00 19 2020-03-21 21:00:00 22 Freq: 3H, dtype: int64 ''' # 五分钟重采样,求和 data.resample('5H').sum() ''' 2020-03-21 00:00:00 10 2020-03-21 05:00:00 35 2020-03-21 10:00:00 60 2020-03-21 15:00:00 85 2020-03-21 20:00:00 86 Freq: 5H, dtype: int64 ''' # 计算OHLC open,high,low,close data.resample('5H').ohlc() ''' open high low close 2020-03-21 00:00:00 0 4 0 4 2020-03-21 05:00:00 5 9 5 9 2020-03-21 10:00:00 10 14 10 14 2020-03-21 15:00:00 15 19 15 19 2020-03-21 20:00:00 20 23 20 23 ''' # 将日期替换为第二天 data.index = data.index + pd.timedelta('1D') # 查看前五条数据 data[:5] ''' 2020-03-22 00:00:00 0 2020-03-22 01:00:00 1 2020-03-22 02:00:00 2 2020-03-22 03:00:00 3 2020-03-22 04:00:00 4 Freq: H, dtype: int64 ''' # 查看指定日期是星期几 # pd.Timestamp('20200321').weekday_name # 'Saturday' # 查看指定日期的年份是否是闰年 pd.Timestamp('20200301').is_leap_year # True # 查看指定日期所在的季度和月份 day = pd.Timestamp('20200321') # Timestamp('2020-03-21 00:00:00') # 查看日期的季度 day.quarter # 1 # 查看日期所在的月份 day.month # 3 # 转换为 python 的日期时间对象 day.to_pydatetime() # datetime.datetime(2020, 3, 21, 0, 0)
2020-05-07
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。