微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python-从numpy ndarray提取特定数据

熊猫新手,任何帮助都值得赞赏

Snapshot of the dataset

def csv_reader(fileName):
    reqcols=['_id__$oid','payload','channel']
    io = pd.read_csv(fileName,sep=",",usecols=reqcols)
    print(io['payload'].values)
    return io  

io [‘payload’]的输出行:

{
    "destination_ip": "172.31.14.66",
    "date": "2014-10-19T01:32:36.669861",
    "classification": "Potentially Bad Traffic",
    "proto": "UDP",
    "source_ip": "172.31.0.2",
    "priority": "`2",
    "header": "1:2003195:5",
    "signature": "ET POLICY Unusual number of DNS No Such Name Responses ",
    "source_port": "53",
    "destination_port": "34638",
    "sensor": "5cda4a12-4730-11e4-9ee4-0a0b6e7c3e9e"
}

我正在尝试从ndarray对象提取特定数据.可从数据框中提取方法是什么

"destination_ip": "172.31.13.124",
"proto": "ICMP",
"source_ip": "201.158.32.1",
"date": "2014-09-28T14:49:43.391463",
"sensor": "139cfdf2-471e-11e4-9ee4-0a0b6e7c3e9e"

解决方法:

我认为您首先需要通过列有效负载中的json.loads或ast.literal_eval将字典的字符串表示形式转换为每行中的字典,然后按构造函数创建新的DataFrame,按子集过滤列,并在必要时按concat添加原始列:

d = {'_id__$oid': ['542f8', '542f8', '542f8'], 'channel': ['snort_alert', 'snort_alert', 'snort_alert'], 'payload': ['{"destination_ip":"172.31.14.66","date": "2014-10-19T01:32:36.669861","classification":"Potentially Bad Traffic","proto":"UDP","source_ip":"172.31.0.2","priority":"2","header":"1:2003195:5","signature":"ET POLICY Unusual number of DNS No Such Name Responses ","source_port":"53","destination_port":"34638","sensor":"5cda4a12-4730-11e4-9ee4-0a0b6e7c3e9e"}', '{"destination_ip":"172.31.14.66","date": "2014-10-19T01:32:36.669861","classification":"Potentially Bad Traffic","proto":"UDP","source_ip":"172.31.0.2","priority":"2","header":"1:2003195:5","signature":"ET POLICY Unusual number of DNS No Such Name Responses ","source_port":"53","destination_port":"34638","sensor":"5cda4a12-4730-11e4-9ee4-0a0b6e7c3e9e"}', '{"destination_ip":"172.31.14.66","date": "2014-10-19T01:32:36.669861","classification":"Potentially Bad Traffic","proto":"UDP","source_ip":"172.31.0.2","priority":"2","header":"1:2003195:5","signature":"ET POLICY Unusual number of DNS No Such Name Responses ","source_port":"53","destination_port":"34638","sensor":"5cda4a12-4730-11e4-9ee4-0a0b6e7c3e9e"}']}
reqcols=['_id__$oid','payload','channel']
df = pd.DataFrame(d)
print (df)
  _id__$oid      channel                                            payload
0     542f8  snort_alert  {"destination_ip":"172.31.14.66","date": "2014...
1     542f8  snort_alert  {"destination_ip":"172.31.14.66","date": "2014...
2     542f8  snort_alert  {"destination_ip":"172.31.14.66","date": "2014...
import json
import ast
df.payload = df.payload.apply(json.loads)
#another slowier solution
#df.payload = df.payload.apply(ast.literal_eval)

required = ["destination_ip", "proto", "source_ip", "date", "sensor"]
df1 = pd.DataFrame(df.payload.values.tolist())[required]
print (df1)
  destination_ip proto   source_ip                        date  \
0   172.31.14.66   UDP  172.31.0.2  2014-10-19T01:32:36.669861   
1   172.31.14.66   UDP  172.31.0.2  2014-10-19T01:32:36.669861   
2   172.31.14.66   UDP  172.31.0.2  2014-10-19T01:32:36.669861   

                                 sensor  
0  5cda4a12-4730-11e4-9ee4-0a0b6e7c3e9e  
1  5cda4a12-4730-11e4-9ee4-0a0b6e7c3e9e  
2  5cda4a12-4730-11e4-9ee4-0a0b6e7c3e9e  

df2 = pd.concat([df[['_id__$oid','channel']], df1], axis=1)
print (df2)
  _id__$oid      channel destination_ip proto   source_ip  \
0     542f8  snort_alert   172.31.14.66   UDP  172.31.0.2   
1     542f8  snort_alert   172.31.14.66   UDP  172.31.0.2   
2     542f8  snort_alert   172.31.14.66   UDP  172.31.0.2   

                         date                                sensor  
0  2014-10-19T01:32:36.669861  5cda4a12-4730-11e4-9ee4-0a0b6e7c3e9e  
1  2014-10-19T01:32:36.669861  5cda4a12-4730-11e4-9ee4-0a0b6e7c3e9e  
2  2014-10-19T01:32:36.669861  5cda4a12-4730-11e4-9ee4-0a0b6e7c3e9e  

时间:

#[30000 rows x 3 columns]
df = pd.concat([df]*10000).reset_index(drop=True)
print (df)

In [38]: %timeit pd.DataFrame(df.payload.apply(json.loads).values.tolist())[required]
1 loop, best of 3: 379 ms per loop

In [39]: %timeit pd.read_json('[{}]'.format(df.payload.str.cat(sep=',')))[required]
1 loop, best of 3: 528 ms per loop

In [40]: %timeit pd.DataFrame(df.payload.apply(ast.literal_eval).values.tolist())[required]
1 loop, best of 3: 1.98 s per loop

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐