说我有以下数据框df:
A B
0 mother1 NaN
1 NaN child1
2 NaN child2
3 mother2 NaN
4 NaN child1
5 mother3 NaN
6 NaN child1
7 NaN child2
8 NaN child3
你怎么能把它变成字典,产生:
结果= {‘mother1’:[‘child1′,’child2’],’mother2’:[‘child1’],’mother3’:[‘child1′,’child2′,’child3’]}
我对此:
import pandas as pd
import numpy as np
results={}
for index1,row1 in df.iterrows():
if row1['A'] is not np.nan:
children=[]
for index2,row2 in df.iterrows():
if row2['B'] is not np.nan:
children.append(row2['B'])
results[row1['A']]=children
但是,结果是错误的:
In[1]: results
Out[1]:
{'mother1': ['child1', 'child2', 'child1', 'child1', 'child2', 'child3'],
'mother2': ['child1', 'child2', 'child1', 'child1', 'child2', 'child3'],
'mother3': ['child1', 'child2', 'child1', 'child1', 'child2', 'child3']}
解决方法:
这是一种方法:
df['A'].fillna(method='ffill', inplace=True)
给予:
A B
0 mother1 NaN
1 mother1 child1
2 mother1 child2
3 mother2 NaN
4 mother2 child1
5 mother3 NaN
6 mother3 child1
7 mother3 child2
8 mother3 child3
然后删除子NA:
df.dropna(subset=['B'], inplace=True)
给予:
A B
1 mother1 child1
2 mother1 child2
4 mother2 child1
6 mother3 child1
7 mother3 child2
8 mother3 child3
然后,您可以使用groupby和字典理解功能来获得最终结果:
results = {k: v['B'].tolist() for k, v in df.groupby('A')}
结果:
{'mother1': ['child1', 'child2'],
'mother2': ['child1'],
'mother3': ['child1', 'child2', 'child3']}
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。