我有以下数据框:
In [372]: df_2
Out[372]:
A ID3 DATETIME
0 B-028 b76cd912ff 2014-10-08 13:43:27
1 B-054 4a57ed0b02 2014-10-08 14:26:19
2 B-076 1a682034f8 2014-10-08 14:29:01
3 B-023 b76cd912ff 2014-10-08 18:39:34
4 B-023 f88g8d7sds 2014-10-08 18:40:18
5 B-033 b76cd912ff 2014-10-08 18:44:30
6 B-032 b76cd912ff 2014-10-08 18:46:00
7 B-037 b76cd912ff 2014-10-08 18:52:15
8 B-046 db959faf02 2014-10-08 18:59:59
9 B-053 b76cd912ff 2014-10-08 19:17:48
10 B-065 b76cd912ff 2014-10-08 19:21:38
我想找到不同条目之间的区别-按“ ID3”分组.
我试图像这样在GroupBy上使用transform():
In [379]: df_2['diff'] = df_2.sort_values(by='DATETIME').groupby('ID3')['DATETIME'].transform(lambda x: x.diff()); df_2['diff']
Out[379]:
0 NaT
1 NaT
2 NaT
3 1970-01-01 04:56:07
4 NaT
5 1970-01-01 00:04:56
6 1970-01-01 00:01:30
7 1970-01-01 00:06:15
8 NaT
9 1970-01-01 00:25:33
10 1970-01-01 00:03:50
Name: diff, dtype: datetime64[ns]
我也尝试过用x.diff().astype(int)进行lambda运算,结果完全相同.
“ DATETIME”和“ diff”的数据类型均为:datetime64 [ns]
我想要实现的是,以秒表示差异,而不是相对于纪元时间而言.
我已经知道可以将df_2 [‘diff’]转换为timedelta,然后在一个链式调用中提取秒,如下所示:
In [405]: df_2['diff'] = pd.to_timedelta(df_2['diff']).map(lambda x: x.total_seconds()); df_2['diff']
Out[407]:
0 NaN
1 NaN
2 NaN
3 17767.0
4 NaN
5 296.0
6 90.0
7 375.0
8 NaN
9 1533.0
10 230.0
Name: diff, dtype: float64
有没有一种方法可以在转换的一个步骤中实现此目标(以秒为df_2 [‘diff’]的值),而不必在此过程中采取几个步骤?
最后,我已经尝试过以转换方式转换到timedelta的方式,但没有成功.
谢谢您的帮助!
解决方法:
更新:类NDFrameGroupBy(GroupBy)中的transform()似乎没有向下转换,并且按预期工作:
In [220]: (df_2[['ID3','DATETIME']]
.....: .sort_values(by='DATETIME')
.....: .groupby('ID3')
.....: .transform(lambda x: x.diff().dt.total_seconds())
.....: )
Out[220]:
DATETIME
0 NaN
1 NaN
2 NaN
3 17767.0
4 NaN
5 296.0
6 90.0
7 375.0
8 NaN
9 1533.0
10 230.0
类SeriesGroupBy(GroupBy)中的transform()尝试执行以下操作:
result = _possibly_downcast_to_dtype(result, dtype)
这可能(我不确定)导致您的问题
旧答案:
尝试这个:
In [168]: df_2.sort_values(by='DATETIME').groupby('ID3')['DATETIME'].diff().dt.total_seconds()
Out[168]:
0 NaN
1 NaN
2 NaN
3 17767.0
4 NaN
5 296.0
6 90.0
7 375.0
8 NaN
9 1533.0
10 230.0
dtype: float64
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。