例如:我有,
df = pd.DataFrame({0: [420, np.nan, 455, np.nan, np.nan, np.nan]})
df
0
0 420.0
1 NaN
2 455.0
3 NaN
4 NaN
5 NaN
然后使用:
df[0].isnull().astype(int)
0 0
1 1
2 0
3 1
4 1
5 1
Name: 0, dtype: int64
我明白了
df[0].fillna(method='ffill') - df[0].isnull().astype(int)
0 420.0
1 419.0
2 455.0
3 454.0
4 454.0
5 454.0
Name: 0, dtype: float64
我想找到0,1,0,1,2,3,然后到最后:
df[0]= 420, 419, 455; 454,453, 452
解决方法:
groupby,cumcount
df[0].ffill() - df.groupby(df[0].notna().cumsum()).cumcount()
0 420.0
1 419.0
2 455.0
3 454.0
4 453.0
5 452.0
dtype: float64
细节
定义组
df[0].notna().cumsum()
0 1
1 1
2 2
3 2
4 2
5 2
Name: 0, dtype: int64
在groupby中使用cumcount
df.groupby(df[0].notna().cumsum()).cumcount()
0 0
1 1
2 0
3 1
4 2
5 3
dtype: int64
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。