我需要通过属性“ids”将数据框随机分成两个不相交的集合.例如,请考虑以下数据框:
df=
Out[470]:
0 1 2 3 ids
0 17.0 18.0 16.0 15.0 13.0
1 18.0 16.0 15.0 15.0 13.0
2 16.0 15.0 15.0 16.0 13.0
131 12.0 8.0 21.0 19.0 14.0
132 8.0 21.0 19.0 20.0 14.0
133 21.0 19.0 20.0 9.0 14.0
248 NaN NaN 12.0 11.0 17.0
249 NaN 12.0 11.0 10.0 17.0
250 12.0 11.0 10.0 NaN 17.0
287 3.0 3.0 1.0 8.0 20.0
288 3.0 1.0 8.0 3.0 20.0
289 1.0 8.0 3.0 3.0 20.0
413 21.0 7.0 16.0 18.0 25.0
414 7.0 16.0 18.0 19.0 25.0
415 16.0 18.0 19.0 18.0 25.0
665 10.0 8.0 8.0 7.0 27.0
666 8.0 8.0 7.0 9.0 27.0
667 8.0 7.0 9.0 8.0 27.0
790 NaN NaN 15.0 NaN 33.0
791 NaN 15.0 NaN 10.0 33.0
792 15.0 NaN 10.0 NaN 33.0
812 NaN 16.0 NaN 17.0 34.0
813 16.0 NaN 17.0 NaN 34.0
814 NaN 17.0 NaN 13.0 34.0
944 3.0 4.0 3.0 18.0 35.0
945 4.0 3.0 18.0 18.0 35.0
946 3.0 18.0 18.0 11.0 35.0
1059 9.0 10.0 3.0 4.0 56.0
1060 10.0 3.0 4.0 3.0 56.0
1061 3.0 4.0 3.0 3.0 56.0
... ... ... ... ...
10125 NaN 9.0 5.0 5.0 101317.0
10126 9.0 5.0 5.0 5.0 101317.0
10127 5.0 5.0 5.0 7.0 101317.0
我需要得到两个(用一些分数大小随机分隔)数据帧,没有相交的id值.
我知道如何以’非潘达式’方式解决它:
>获取ID的唯一值
>将唯一值随机分成两个不相交的组
>使用.isin()根据两组中的id值选择行
我想知道是否有一个简单而巧妙的方法来做一些pandas内置函数,如.sample()?
解决方法:
使用sklearn.model_selection.GroupShuffleSplit
执行拆分:
from sklearn.model_selection import GroupShuffleSplit
# Initialize the GroupShuffleSplit.
gss = GroupShuffleSplit(n_splits=1, test_size=0.5)
# Get the indexers for the split.
idx1, idx2 = next(gss.split(df, groups=df.ids))
# Get the split DataFrames.
df1, df2 = df.iloc[idx1], df.iloc[idx2]
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。