微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

基于anaconda3的Pytorch环境搭建

方法

  1. 安装anaconda3,版本选择新的就行
  2. 打开anaconda prompt创建虚拟环境conda create -n pytorch_gpu python=3.9,pytorch_gpu是环境名称,可自行选取,python=3.9是选择的python版本,可自行选择,conda会自动下载选择的python版本
  3. 接下来去pytorch官网 https://pytorch.org/get-started/locally/
  • 直接选择最新的cuda安装,把conda命令复制到环境下执行即可
  • 安装结束执行torch.cuda.available()返回true则成功

(这个方法最简单但可能会不行,我自己环境下是没问题的,尽管的我的显卡驱动版本不支持cuda的高版本,但是也可以,不行换第二个方法

方法

  1. 安装anaconda3,版本选择新的就行
  2. 打开anaconda prompt创建虚拟环境conda create -n pytorch_gpu python=3.9,pytorch_gpu是环境名称,可自行选取,python=3.9是选择的python版本,可自行选择,conda会自动下载选择的python版本
  3. 打开cmd按照下图输入查看显卡驱动版本

    image

  4. 查看显卡驱动版本与cuda兼容版本

    image


    链接https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
  5. 选择合适的cuda版本,比如我这里驱动版本为457,那么可以选择任何比457小的cuda版本。(我这里>=457的都用不了)
  6. 接下来去pytorch官网(https://pytorch.org/get-started/previous-versions
  • 先进入自己创建的虚拟环境
  • 在pytorch官网中找到匹配自己cuda版本的conda命令复制到自己的conda环境下安装(这一步没必要切换源,我从官网直接下每次都成功了)
  • 安装结束执行torch.cuda.available()返回true则成功

补充

  • 每必要按照大部分网上的教程安装cuda再安装cudann,因为pytorch官网的conda命令包含了cudatoolkit

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐