如何使numba @jit使用所有cpu核心(parallelize numba @jit)

我正在使用numbas @jit装饰器在python添加两个numpy数组.如果我使用@jit与python相比,性能如此之高.

但是,即使我传入@numba.jit(nopython = True,parallel = True,nogil = True),它也没有使用所有cpu内核.

有没有办法使用numba @jit来使用所有cpu内核.

这是我的代码

import time                                                
import numpy as np                                         
import numba                                               

SIZE = 2147483648 * 6                                      

a = np.full(SIZE,1,dtype = np.int32)                     

b = np.full(SIZE,dtype = np.int32)                     

c = np.ndarray(SIZE,dtype = np.int32)                     

@numba.jit(nopython = True,nogil = True) 
def add(a,b,c):                                          
    for i in range(SIZE):                                  
        c[i] = a[i] + b[i]                                 

start = time.time()                                        
add(a,c)                                               
end = time.time()                                          

print(end - start)                                        
最佳答案
您可以将parallel = True传递给任何numba jitted函数,但这并不意味着它总是使用所有核心.您必须了解numba使用一些启发式方法来使代码并行执行,有时这些启发式方法根本找不到任何在代码中并行化的内容.目前有一个pull request,如果无法使其“并行”,它会发出警告.所以它更像是“请尽可能并行执行”参数而不是“强制执行并行执行”.

但是,如果您确实知道可以并行化代码,则可以始终手动使用线程或进程.只是改编example of using multi-threading from the numba docs

#!/usr/bin/env python
from __future__ import print_function,division,absolute_import

import math
import threading
from timeit import repeat

import numpy as np
from numba import jit

nthreads = 4
size = 10**7  # CHANGED

# CHANGED
def func_np(a,b):
    """
    Control function using Numpy.
    """
    return a + b

# CHANGED
@jit('void(double[:],double[:],double[:])',nopython=True,nogil=True)
def inner_func_nb(result,a,b):
    """
    Function under test.
    """
    for i in range(len(result)):
        result[i] = a[i] + b[i]

def timefunc(correct,s,func,*args,**kwargs):
    """
    Benchmark *func* and print out its runtime.
    """
    print(s.ljust(20),end=" ")
    # Make sure the function is compiled before we start the benchmark
    res = func(*args,**kwargs)
    if correct is not None:
        assert np.allclose(res,correct),(res,correct)
    # time it
    print('{:>5.0f} ms'.format(min(repeat(lambda: func(*args,**kwargs),number=5,repeat=2)) * 1000))
    return res

def make_singlethread(inner_func):
    """
    Run the given function inside a single thread.
    """
    def func(*args):
        length = len(args[0])
        result = np.empty(length,dtype=np.float64)
        inner_func(result,*args)
        return result
    return func

def make_multithread(inner_func,numthreads):
    """
    Run the given function inside *numthreads* threads,splitting its
    arguments into equal-sized chunks.
    """
    def func_mt(*args):
        length = len(args[0])
        result = np.empty(length,dtype=np.float64)
        args = (result,) + args
        chunklen = (length + numthreads - 1) // numthreads
        # Create argument tuples for each input chunk
        chunks = [[arg[i * chunklen:(i + 1) * chunklen] for arg in args]
                  for i in range(numthreads)]
        # Spawn one thread per chunk
        threads = [threading.Thread(target=inner_func,args=chunk)
                   for chunk in chunks]
        for thread in threads:
            thread.start()
        for thread in threads:
            thread.join()
        return result
    return func_mt


func_nb = make_singlethread(inner_func_nb)
func_nb_mt = make_multithread(inner_func_nb,nthreads)

a = np.random.rand(size)
b = np.random.rand(size)

correct = timefunc(None,"numpy (1 thread)",func_np,b)
timefunc(correct,"numba (1 thread)",func_nb,"numba (%d threads)" % nthreads,func_nb_mt,b)

我突出显示了我更改的部分,其他所有内容都是从示例中逐字复制的.这利用了我机器上的所有核心(4核心机器因此4线程),但没有显示出显着的加速:

numpy (1 thread)       539 ms
numba (1 thread)       536 ms
numba (4 threads)      442 ms

在这种情况下,多线程缺乏(很多)加速是加法是带宽受限的操作.这意味着从数组加载元素并将结果放在结果数组中需要花费更多的时间而不是实际添加.

在这些情况下,由于并行执行,您甚至可以看到减速!

只有当函数更复杂并且实际操作与加载和存储数组元素相比需要大量时间时,您才会看到并行执行会有很大改进. numba文档中的示例是这样的:

def func_np(a,b):
    """
    Control function using Numpy.
    """
    return np.exp(2.1 * a + 3.2 * b)

@jit('void(double[:],b):
    """
    Function under test.
    """
    for i in range(len(result)):
        result[i] = math.exp(2.1 * a[i] + 3.2 * b[i])

这实际上(几乎)随着线程数量而缩放,因为两次乘法,一次加法和一次对math.exp的调用比加载和存储结果要慢得多:

func_nb = make_singlethread(inner_func_nb)
func_nb_mt2 = make_multithread(inner_func_nb,2)
func_nb_mt3 = make_multithread(inner_func_nb,3)
func_nb_mt4 = make_multithread(inner_func_nb,4)

a = np.random.rand(size)
b = np.random.rand(size)

correct = timefunc(None,"numba (2 threads)",func_nb_mt2,"numba (3 threads)",func_nb_mt3,"numba (4 threads)",func_nb_mt4,b)

结果:

numpy (1 thread)      3422 ms
numba (1 thread)      2959 ms
numba (2 threads)     1555 ms
numba (3 threads)     1080 ms
numba (4 threads)      797 ms

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


我最近重新拾起了计算机视觉,借助Python的opencv还有face_recognition库写了个简单的图像识别demo,额外定制了一些内容,原本想打包成exe然后发给朋友,不过在这当中遇到了许多小问题,都解决了,记录一下踩过的坑。 1、Pyinstaller打包过程当中出现warning,跟d
说到Pooling,相信学习过CNN的朋友们都不会感到陌生。Pooling在中文当中的意思是“池化”,在神经网络当中非常常见,通常用的比较多的一种是Max Pooling,具体操作如下图: 结合图像理解,相信你也会大概明白其中的本意。不过Pooling并不是只可以选取2x2的窗口大小,即便是3x3,
记得大一学Python的时候,有一个题目是判断一个数是否是复数。当时觉得比较复杂不好写,就琢磨了一个偷懒的好办法,用异常处理的手段便可以大大程度帮助你简短代码(偷懒)。以下是判断整数和复数的两段小代码: 相信看到这里,你也有所顿悟,能拓展出更多有意思的方法~
文章目录 3 直方图Histogramplot1. 基本直方图的绘制 Basic histogram2. 数据分布与密度信息显示 Control rug and density on seaborn histogram3. 带箱形图的直方图 Histogram with a boxplot on t
文章目录 5 小提琴图Violinplot1. 基础小提琴图绘制 Basic violinplot2. 小提琴图样式自定义 Custom seaborn violinplot3. 小提琴图颜色自定义 Control color of seaborn violinplot4. 分组小提琴图 Group
文章目录 4 核密度图Densityplot1. 基础核密度图绘制 Basic density plot2. 核密度图的区间控制 Control bandwidth of density plot3. 多个变量的核密度图绘制 Density plot of several variables4. 边
首先 import tensorflow as tf tf.argmax(tenso,n)函数会返回tensor中参数指定的维度中的最大值的索引或者向量。当tensor为矩阵返回向量,tensor为向量返回索引号。其中n表示具体参数的维度。 以实际例子为说明: import tensorflow a
seaborn学习笔记章节 seaborn是一个基于matplotlib的Python数据可视化库。seaborn是matplotlib的高级封装,可以绘制有吸引力且信息丰富的统计图形。相对于matplotlib,seaborn语法更简洁,两者关系类似于numpy和pandas之间的关系,seabo
Python ConfigParser教程显示了如何使用ConfigParser在Python中使用配置文件。 文章目录 1 介绍1.1 Python ConfigParser读取文件1.2 Python ConfigParser中的节1.3 Python ConfigParser从字符串中读取数据
1. 处理Excel 电子表格笔记(第12章)(代码下载) 本文主要介绍openpyxl 的2.5.12版处理excel电子表格,原书是2.1.4 版,OpenPyXL 团队会经常发布新版本。不过不用担心,新版本应该在相当长的时间内向后兼容。如果你有新版本,想看看它提供了什么新功能,可以查看Open
1. 发送电子邮件和短信笔记(第16章)(代码下载) 1.1 发送电子邮件 简单邮件传输协议(SMTP)是用于发送电子邮件的协议。SMTP 规定电子邮件应该如何格式化、加密、在邮件服务器之间传递,以及在你点击发送后,计算机要处理的所有其他细节。。但是,你并不需要知道这些技术细节,因为Python 的
文章目录 12 绘图实例(4) Drawing example(4)1. Scatterplot with varying point sizes and hues(relplot)2. Scatterplot with categorical variables(swarmplot)3. Scat
文章目录 10 绘图实例(2) Drawing example(2)1. Grouped violinplots with split violins(violinplot)2. Annotated heatmaps(heatmap)3. Hexbin plot with marginal dist
文章目录 9 绘图实例(1) Drawing example(1)1. Anscombe’s quartet(lmplot)2. Color palette choices(barplot)3. Different cubehelix palettes(kdeplot)4. Distribution
Python装饰器教程展示了如何在Python中使用装饰器基本功能。 文章目录 1 使用教程1.1 Python装饰器简单示例1.2 带@符号的Python装饰器1.3 用参数修饰函数1.4 Python装饰器修改数据1.5 Python多层装饰器1.6 Python装饰器计时示例 2 参考 1 使
1. 用GUI 自动化控制键盘和鼠标第18章 (代码下载) pyautogui模块可以向Windows、OS X 和Linux 发送虚拟按键和鼠标点击。根据使用的操作系统,在安装pyautogui之前,可能需要安装一些其他模块。 Windows: 不需要安装其他模块。OS X: sudo pip3
文章目录 生成文件目录结构多图合并找出文件夹中相似图像 生成文件目录结构 生成文件夹或文件的目录结构,并保存结果。可选是否滤除目录,特定文件以及可以设定最大查找文件结构深度。效果如下: root:[z:/] |--a.py |--image | |--cat1.jpg | |--cat2.jpg |
文章目录 VENN DIAGRAM(维恩图)1. 具有2个分组的基本的维恩图 Venn diagram with 2 groups2. 具有3个组的基本维恩图 Venn diagram with 3 groups3. 自定义维恩图 Custom Venn diagram4. 精致的维恩图 Elabo
mxnet60分钟入门Gluon教程代码下载,适合做过深度学习的人使用。入门教程地址: https://beta.mxnet.io/guide/getting-started/crash-course/index.html mxnet安装方法:pip install mxnet 1 在mxnet中使
文章目录 1 安装2 快速入门2.1 基本用法2.2 输出图像格式2.3 图像style设置2.4 属性2.5 子图和聚类 3 实例4 如何进一步使用python graphviz Graphviz是一款能够自动排版的流程图绘图软件。python graphviz则是graphviz的python实