微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python – 错误表示加载预训练网络时的扁平尺寸

我正在尝试加载预训练网络,我收到以下错误

F1101 23:03:41.857909 73 net.cpp:757] Cannot copy param 0 weights
from layer ‘fc4’; shape mismatch. Source param shape is 512 4096
(2097152); target param shape is 512 256 4 4 (2097152). To learn this
layer’s parameters from scratch rather than copying from a saved net,
rename the layer.

我注意到512 x 256 x 4 x 4 == 512 x 4096,所以似乎在保存和重新加载网络权重时,图层以某种方式被展平.

我该如何抵消这个错误

重现

我正试图在this GitHub repository中使用D-CNN预训练网络.

我加载网络

import caffe
net = caffe.Net('deploy_D-CNN.prototxt','D-CNN.caffemodel',caffe.TEST)

原型文件

name: "D-CNN"
input: "data"
input_dim: 10
input_dim: 3
input_dim: 259
input_dim: 259
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 64
    kernel_size: 5
    stride: 2
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "norm1"
  top: "conv2"
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "fc4"
  type: "Convolution"
  bottom: "conv3"
  top: "fc4"
  convolution_param {
    num_output: 512
    pad: 0
    kernel_size: 4
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "fc4"
  top: "fc4"
}
layer {
  name: "drop4"
  type: "Dropout"
  bottom: "fc4"
  top: "fc4"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer { 
  name: "pool5_spm3"
  type: "Pooling"
  bottom: "fc4"
  top: "pool5_spm3"
  pooling_param {
    pool: MAX
    kernel_size: 10
    stride: 10
  }
}
layer {
  name: "pool5_spm3_flatten"
  type: "Flatten"
  bottom: "pool5_spm3"
  top: "pool5_spm3_flatten"
}
layer { 
  name: "pool5_spm2"
  type: "Pooling"
  bottom: "fc4"
  top: "pool5_spm2"
  pooling_param {
    pool: MAX
    kernel_size: 14
    stride: 14
  }
}
layer {
  name: "pool5_spm2_flatten"
  type: "Flatten"
  bottom: "pool5_spm2"
  top: "pool5_spm2_flatten"
}
layer { 
  name: "pool5_spm1"
  type: "Pooling"
  bottom: "fc4"
  top: "pool5_spm1"
  pooling_param {
    pool: MAX
    kernel_size: 29
    stride: 29
  }
}
layer {
  name: "pool5_spm1_flatten"
  type: "Flatten"
  bottom: "pool5_spm1"
  top: "pool5_spm1_flatten"
}
layer {
  name: "pool5_spm"
  type: "Concat"
  bottom: "pool5_spm1_flatten"
  bottom: "pool5_spm2_flatten"
  bottom: "pool5_spm3_flatten"
  top: "pool5_spm"
  concat_param {
    concat_dim: 1
  }
}


layer {
  name: "fc4_2"
  type: "InnerProduct"
  bottom: "pool5_spm"
  top: "fc4_2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 512
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "fc4_2"
  top: "fc4_2"
}
layer {
  name: "drop4"
  type: "Dropout"
  bottom: "fc4_2"
  top: "fc4_2"
  dropout_param {
    dropout_ratio: 0.5
  }
}

layer {
  name: "fc5"
  type: "InnerProduct"
  bottom: "fc4_2"
  top: "fc5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 19
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prob"
  type: "softmax"
  bottom: "fc5"
  top: "prob"
}
最佳答案
看起来你正在采用预训练网,其中“fc4”层是一个全连接的层(又名类型:“InnerProduct”层),它被“重新塑造”成卷积层.
由于内积层和卷积层对输入执行大致相同的线性运算,因此可以在某些假设下进行这种改变(参见例如here).
正如您已经正确识别的那样,原始预训练的完全连接层的权重被保存为“扁平化”,因为形状可以预期卷积层.

我认为这个问题的解决方案可以使用share_mode: PERMISSIVE

layer {
  name: "fc4"
  type: "Convolution"
  bottom: "conv3"
  top: "fc4"
  convolution_param {
    num_output: 512
    pad: 0
    kernel_size: 4
  }
  param {
    lr_mult: 1
    decay_mult: 1
    share_mode: PERMISSIVE  # should help caffe overcome the shape mismatch
  }
  param {
    lr_mult: 2
    decay_mult: 0
    share_mode: PERMISSIVE
  }
}

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


我最近重新拾起了计算机视觉,借助Python的opencv还有face_recognition库写了个简单的图像识别demo,额外定制了一些内容,原本想打包成exe然后发给朋友,不过在这当中遇到了许多小问题,都解决了,记录一下踩过的坑。 1、Pyinstaller打包过程当中出现warning,跟d
说到Pooling,相信学习过CNN的朋友们都不会感到陌生。Pooling在中文当中的意思是“池化”,在神经网络当中非常常见,通常用的比较多的一种是Max Pooling,具体操作如下图: 结合图像理解,相信你也会大概明白其中的本意。不过Pooling并不是只可以选取2x2的窗口大小,即便是3x3,
记得大一学Python的时候,有一个题目是判断一个数是否是复数。当时觉得比较复杂不好写,就琢磨了一个偷懒的好办法,用异常处理的手段便可以大大程度帮助你简短代码(偷懒)。以下是判断整数和复数的两段小代码: 相信看到这里,你也有所顿悟,能拓展出更多有意思的方法~
文章目录 3 直方图Histogramplot1. 基本直方图的绘制 Basic histogram2. 数据分布与密度信息显示 Control rug and density on seaborn histogram3. 带箱形图的直方图 Histogram with a boxplot on t
文章目录 5 小提琴图Violinplot1. 基础小提琴图绘制 Basic violinplot2. 小提琴图样式自定义 Custom seaborn violinplot3. 小提琴图颜色自定义 Control color of seaborn violinplot4. 分组小提琴图 Group
文章目录 4 核密度图Densityplot1. 基础核密度图绘制 Basic density plot2. 核密度图的区间控制 Control bandwidth of density plot3. 多个变量的核密度图绘制 Density plot of several variables4. 边
首先 import tensorflow as tf tf.argmax(tenso,n)函数会返回tensor中参数指定的维度中的最大值的索引或者向量。当tensor为矩阵返回向量,tensor为向量返回索引号。其中n表示具体参数的维度。 以实际例子为说明: import tensorflow a
seaborn学习笔记章节 seaborn是一个基于matplotlib的Python数据可视化库。seaborn是matplotlib的高级封装,可以绘制有吸引力且信息丰富的统计图形。相对于matplotlib,seaborn语法更简洁,两者关系类似于numpy和pandas之间的关系,seabo
Python ConfigParser教程显示了如何使用ConfigParser在Python中使用配置文件。 文章目录 1 介绍1.1 Python ConfigParser读取文件1.2 Python ConfigParser中的节1.3 Python ConfigParser从字符串中读取数据
1. 处理Excel 电子表格笔记(第12章)(代码下载) 本文主要介绍openpyxl 的2.5.12版处理excel电子表格,原书是2.1.4 版,OpenPyXL 团队会经常发布新版本。不过不用担心,新版本应该在相当长的时间内向后兼容。如果你有新版本,想看看它提供了什么新功能,可以查看Open