下面是编程之家 jb51.cc 通过网络收集整理的代码片段。
编程之家小编现在分享给大家,也给大家做个参考。
python通过BF算法实现关键词匹配
算法特点:整体移动方向:可认为在固定的情况下,p从左向右滑动;匹配比较时,从p的最左边位开始向右逐位与t串中对应位比较。p的滑动距离为1,这导致BF算法匹配效率低(相比其他算法,如:BM,KMP,滑动没有跳跃)。
该算法的时间复杂度为O(len(t)*len(p)),空间复杂度为O(len(t)+len(p))
#!/usr/bin/python # -*- coding: UTF-8 # filename BF import time """ t="this is a big apple,this is a big apple,this is a big apple." p="apple" """ t="为什么叫向量空间模型呢?其实我们可以把每个词给看成一个维度,而词的频率看成其值(有向),即向量,这样每篇文章的词及其频率就构成了一个i维空间图,两个文档的相似度就是两个空间图的接近度。假设文章只有两维的话,那么空间图就可以画在一个平面直角坐标系当中,读者可以假想两篇只有两个词的文章画图进行理解。" p="读者" i=0 count=0 start=time.time() while (i <=len(t)-len(p)): j=0 while (t[i]==p[j]): i=i+1 j=j+1 if j==len(p): break elif (j==len(p)-1): count=count+1 else: i=i+1 j=0 print count print time.time()-start算法思想:目标串t与模式串p逐词比较,若对应位匹配,则进行下一位比较;若不相同,p右移1位,从p的第1位重新开始比较。
算法特点:整体移动方向:可认为在固定的情况下,p从左向右滑动;匹配比较时,从p的最左边位开始向右逐位与t串中对应位比较。p的滑动距离为1,这导致BF算法匹配效率低(相比其他算法,如:BM,KMP,滑动没有跳跃)。
该算法的时间复杂度为O(len(t)*len(p)),空间复杂度为O(len(t)+len(p))
以上是编程之家(jb51.cc)为你收集整理的全部代码内容,希望文章能够帮你解决所遇到的程序开发问题。
如果觉得编程之家网站内容还不错,欢迎将编程之家网站推荐给程序员好友。
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。