微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

python机器学习理论与实战四逻辑回归

         从这节算是开始进入“正规”的机器学习了吧,之所以“正规”因为它开始要建立价值函数(cost function),接着优化价值函数求出权重,然后测试验证。这整套的流程是机器学习必经环节。今天要学习的话题是逻辑回归,逻辑回归也是一种有监督学习方法(supervised machine learning)。逻辑回归一般用来做预测,也可以用来做分类,预测是某个类别^.^!线性回归想比大家都不陌生了,y=kx+b,给定一堆数据点,拟合出k和b的值就行了,下次给定X时,就可以计算出y,这就是回归。而逻辑回归跟这个有点区别,它是一种非线性函数,拟合功能颇为强大,而且它是连续函数,可以对其求导,这点很重要,如果一个函数不可求导,那它在机器学习用起来很麻烦,早期的海维赛德(Heaviside)阶梯函数就因此被sigmoid函数取代,因为可导意味着我们可以很快找到其极值点,这就是优化方法的重要思想之一:利用求导,得到梯度,然后用梯度下降法更新参数。

        下面来看看逻辑回归的sigmoid函数,如(图一)所示:

(图一)

            (图一)中上图是sigmoid函数在定义域[-5,5] 上的形状,而下图是在定义域[-60,60]上的形状,由这两个图可以看出,它比较适合做二类的回归,因为严重两级分化。Sigmoid函数的如(公式一)所示:

(公式一)

         现在有了二类回归函数模型,就可以把特征映射到这个模型上了,而且sigmoid函数的自变量只有一个Z,假设我们的特征为X=[x0,x1,x2…xn]。令

,当给定大批的训练样本特征X时,我们只要找到合适的W=[w0,w1,w2…wn]来正确的把每个样本特征X映射到sigmoid函数的两级上,也就是说正确的完成了类别回归就行了,那么以后来个测试样本,只要和权重相乘后,带入sigmoid函数计算出的值就是预测值啦,很简单是吧。那怎么求权重W呢?

          要计算W,就要进入优化求解阶段咯,用的方法是梯度下降法或者随机梯度下降法。说到梯度下降,梯度下降一般对什么求梯度呢?梯度是一个函数上升最快的方向,沿着梯度方向我们可以很快找到极值点。我们找什么极值?仔细想想,当然是找训练模型的误差极值,当模型预测值和训练样本给出的正确值之间的误差和最小时,模型参数就是我们要求的。当然误差最小有可能导致过拟合,这个以后再说。我们先建立模型训练误差价值函数(cost function),如(公式二)所示:


(公式二)

        (公式二)中Y表示训练样本真实值,当J(theta)最小时的所得的theta就是我们要求的模型权重,可以看出J(theta)是个凸函数,得到的最小值也是全局最小。对其求导后得出梯度,如(公式三)所示:


(公式三)

        由于我们是找极小值,而梯度方向是极大值方向,因此我们取负号,沿着负梯度方向更新参数,如(公式四)所示:


(公式四)

        按照(公式四)的参数更新方法,当权重不再变化时,我们就宣称找到了极值点,此时的权重也是我们要求的,整个参数更新示意图如(图二)所示:


(图二)

原理到此为止逻辑回归基本就说完了,下面进入代码实战阶段:

from numpy import * 
 
def loadDataSet(): 
  dataMat = []; labelMat = [] 
  fr = open('testSet.txt') 
  for line in fr.readlines(): 
    lineArr = line.strip().split() 
    dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])]) 
    labelMat.append(int(lineArr[2])) 
  return dataMat,labelMat 
 
def sigmoid(inX): 
  return 1.0/(1+exp(-inX)) 

上面两个函数分别是加载训练集和定义sigmoid函数,都比较简单。下面发出梯度下降的代码

def gradAscent(dataMatIn,classLabels): 
  dataMatrix = mat(dataMatIn)       #convert to NumPy matrix 
  labelMat = mat(classLabels).transpose() #convert to NumPy matrix 
  m,n = shape(dataMatrix) 
  alpha = 0.001 
  maxCycles = 500 
  weights = ones((n,1)) 
  for k in range(maxCycles):       #heavy on matrix operations 
    h = sigmoid(dataMatrix*weights)   #matrix mult 
    error = (labelMat - h)       #vector subtraction 
    weights = weights + alpha * dataMatrix.transpose()* error #matrix mult 
  return weights 

         梯度下降输入训练集和对应标签,接着就是迭代跟新参数,计算梯度,然后更新参数,注意倒数第二句就是按照(公式三)和(公式四)来更新参数。

为了直观的看到我们得到的权重是否正确的,我们把权重和样本打印出来,下面是相关打印代码

def plotBestFit(weights): 
  import matplotlib.pyplot as plt 
  dataMat,labelMat=loadDataSet() 
  dataArr = array(dataMat) 
  n = shape(dataArr)[0]  
  xcord1 = []; ycord1 = [] 
  xcord2 = []; ycord2 = [] 
  for i in range(n): 
    if int(labelMat[i])== 1: 
      xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2]) 
    else: 
      xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2]) 
  fig = plt.figure() 
  ax = fig.add_subplot(111) 
  ax.scatter(xcord1,ycord1,s=30,c='red',marker='s') 
  ax.scatter(xcord2,ycord2,c='green') 
  x = arange(-3.0,3.0,0.1) 
  y = (-weights[0]-weights[1]*x)/weights[2] 
  ax.plot(x,y) 
  plt.xlabel('X1'); plt.ylabel('X2'); 
  plt.show() 

打印的效果图如(图三)所示:


(图三)

       可以看出效果蛮不错的,小错误是难免的,如果训练集没有错误反而危险,说到这基本就说完了,但是考虑到这个方法对少量样本(几百的)还行,在实际中当遇到10亿数量级时,而且特征维数上千时,这种方法很恐怖,光计算梯度就要消耗大量时间,因此要使用随机梯度下降方法随机梯度下降算法和梯度下降算法原理一样,只是计算梯度不再使用所有样本,而是使用一个或者一小批来计算梯度,这样可以减少计算代价,虽然权重更新的路径很曲折,但最终也会收敛的,如(图四)所示


(图四)

下面也发出随机梯度下降的代码

def stocgradAscent1(dataMatrix,classLabels,numIter=150): 
  m,n = shape(dataMatrix) 
  weights = ones(n)  #initialize to all ones 
  for j in range(numIter): 
    dataIndex = range(m) 
    for i in range(m): 
      alpha = 4/(1.0+j+i)+0.0001  #apha decreases with iteration,does not  
      randindex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant 
      h = sigmoid(sum(dataMatrix[randindex]*weights)) 
      error = classLabels[randindex] - h 
      weights = weights + alpha * error * dataMatrix[randindex] 
      del(dataIndex[randindex]) 
  return weights 

最后也给出一个分类代码,只要把阈值设为0.5,大于0.5划为一类,小于0.5划为另一类就行了,代码如下:

def classifyVector(inX,weights): 
  prob = sigmoid(sum(inX*weights)) 
  if prob > 0.5: return 1.0 
  else: return 0.0 

总结:

        优点:计算量不高,容易实现,对现实数据也很容易描述

        缺点:很容易欠拟合,精度可能也会不高

参考文献:

    [1] machine learning in action. Peter Harrington

    [2] machine learning.Andrew Ng

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程小技巧。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


我最近重新拾起了计算机视觉,借助Python的opencv还有face_recognition库写了个简单的图像识别demo,额外定制了一些内容,原本想打包成exe然后发给朋友,不过在这当中遇到了许多小问题,都解决了,记录一下踩过的坑。 1、Pyinstaller打包过程当中出现warning,跟d
说到Pooling,相信学习过CNN的朋友们都不会感到陌生。Pooling在中文当中的意思是“池化”,在神经网络当中非常常见,通常用的比较多的一种是Max Pooling,具体操作如下图: 结合图像理解,相信你也会大概明白其中的本意。不过Pooling并不是只可以选取2x2的窗口大小,即便是3x3,
记得大一学Python的时候,有一个题目是判断一个数是否是复数。当时觉得比较复杂不好写,就琢磨了一个偷懒的好办法,用异常处理的手段便可以大大程度帮助你简短代码(偷懒)。以下是判断整数和复数的两段小代码: 相信看到这里,你也有所顿悟,能拓展出更多有意思的方法~
文章目录 3 直方图Histogramplot1. 基本直方图的绘制 Basic histogram2. 数据分布与密度信息显示 Control rug and density on seaborn histogram3. 带箱形图的直方图 Histogram with a boxplot on t
文章目录 5 小提琴图Violinplot1. 基础小提琴图绘制 Basic violinplot2. 小提琴图样式自定义 Custom seaborn violinplot3. 小提琴图颜色自定义 Control color of seaborn violinplot4. 分组小提琴图 Group
文章目录 4 核密度图Densityplot1. 基础核密度图绘制 Basic density plot2. 核密度图的区间控制 Control bandwidth of density plot3. 多个变量的核密度图绘制 Density plot of several variables4. 边
首先 import tensorflow as tf tf.argmax(tenso,n)函数会返回tensor中参数指定的维度中的最大值的索引或者向量。当tensor为矩阵返回向量,tensor为向量返回索引号。其中n表示具体参数的维度。 以实际例子为说明: import tensorflow a
seaborn学习笔记章节 seaborn是一个基于matplotlib的Python数据可视化库。seaborn是matplotlib的高级封装,可以绘制有吸引力且信息丰富的统计图形。相对于matplotlib,seaborn语法更简洁,两者关系类似于numpy和pandas之间的关系,seabo
Python ConfigParser教程显示了如何使用ConfigParser在Python中使用配置文件。 文章目录 1 介绍1.1 Python ConfigParser读取文件1.2 Python ConfigParser中的节1.3 Python ConfigParser从字符串中读取数据
1. 处理Excel 电子表格笔记(第12章)(代码下载) 本文主要介绍openpyxl 的2.5.12版处理excel电子表格,原书是2.1.4 版,OpenPyXL 团队会经常发布新版本。不过不用担心,新版本应该在相当长的时间内向后兼容。如果你有新版本,想看看它提供了什么新功能,可以查看Open