微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

TensorFlow实现非线性支持向量机的实现方法

这里将加载iris数据集,创建一个山鸢尾花(I.setosa)的分类器。

# Nonlinear SVM Example
#----------------------------------
#
# This function wll illustrate how to
# implement the gaussian kernel on
# the iris dataset.
#
# Gaussian Kernel:
# K(x1,x2) = exp(-gamma * abs(x1 - x2)^2)

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()

# Create graph
sess = tf.Session()

# Load the data
# iris.data = [(Sepal Length,Sepal Width,Petal Length,Petal Width)]
# 加载iris数据集,抽取花萼长度和花瓣宽度,分割每类的x_vals值和y_vals值
iris = datasets.load_iris()
x_vals = np.array([[x[0],x[3]] for x in iris.data])
y_vals = np.array([1 if y==0 else -1 for y in iris.target])
class1_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==1]
class1_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==1]
class2_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==-1]
class2_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==-1]

# Declare batch size
# 声明批量大小(偏向于更大批量大小)
batch_size = 150

# Initialize placeholders
x_data = tf.placeholder(shape=[None,2],dtype=tf.float32)
y_target = tf.placeholder(shape=[None,1],dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None,dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1,batch_size]))

# Gaussian (RBF) kernel
# 声明批量大小(偏向于更大批量大小)
gamma = tf.constant(-25.0)
sq_dists = tf.multiply(2.,tf.matmul(x_data,tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma,tf.abs(sq_dists)))

# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b),b)
y_target_cross = tf.matmul(y_target,tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel,tf.multiply(b_vec_cross,y_target_cross)))
loss = tf.negative(tf.subtract(first_term,second_term))

# Gaussian (RBF) prediction kernel
# 创建一个预测核函数
rA = tf.reshape(tf.reduce_sum(tf.square(x_data),1),[-1,1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid),1])
pred_sq_dist = tf.add(tf.subtract(rA,tf.multiply(2.,tf.transpose(prediction_grid)))),tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma,tf.abs(pred_sq_dist)))

# 声明一个准确度函数,其为正确分类的数据点的百分比
prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target),b),pred_kernel)
prediction = tf.sign(prediction_output-tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction),tf.squeeze(y_target)),tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec = []
batch_accuracy = []
for i in range(300):
  rand_index = np.random.choice(len(x_vals),size=batch_size)
  rand_x = x_vals[rand_index]
  rand_y = np.transpose([y_vals[rand_index]])
  sess.run(train_step,Feed_dict={x_data: rand_x,y_target: rand_y})

  temp_loss = sess.run(loss,y_target: rand_y})
  loss_vec.append(temp_loss)

  acc_temp = sess.run(accuracy,y_target: rand_y,prediction_grid:rand_x})
  batch_accuracy.append(acc_temp)

  if (i+1)%75==0:
    print('Step #' + str(i+1))
    print('Loss = ' + str(temp_loss))

# Create a mesh to plot points in
# 为了绘制决策边界(Decision Boundary),我们创建一个数据点(x,y)的网格,评估预测函数
x_min,x_max = x_vals[:,0].min() - 1,x_vals[:,0].max() + 1
y_min,y_max = x_vals[:,1].min() - 1,1].max() + 1
xx,yy = np.meshgrid(np.arange(x_min,x_max,0.02),np.arange(y_min,y_max,0.02))
grid_points = np.c_[xx.ravel(),yy.ravel()]
[grid_predictions] = sess.run(prediction,prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)

# Plot points and grid
plt.contourf(xx,yy,grid_predictions,cmap=plt.cm.Paired,alpha=0.8)
plt.plot(class1_x,class1_y,'ro',label='I. setosa')
plt.plot(class2_x,class2_y,'kx',label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Pedal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5,3.0])
plt.xlim([3.5,8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy,'k-',label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec,'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

输出

Step #75
Loss = -110.332
Step #150
Loss = -222.832
Step #225
Loss = -335.332
Step #300
Loss = -447.832

四种不同的gamma值(1,10,25,100):

 

 

 

 

不同gamma值的山鸢尾花(I.setosa)的分类器结果图,采用高斯核函数的SVM。

gamma值越大,每个数据点对分类边界的影响就越大。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程小技巧。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


使用爬虫利器 Playwright,轻松爬取抖查查数据 我们先分析登录的接口,其中 url 有一些非业务参数:ts、he、sign、secret。 然后根据这些参数作为关键词,定位到相关的 js 代码。 最后,逐步进行代码的跟踪,发现大部分的代码被混淆加密了。 花费了大半天,来还原这些混淆加密的代码
轻松爬取灰豚数据的抖音商品数据 调用两次登录接口实现模拟登录 我们分析登录接口,发现调用了两次不同的接口;而且,需要先调用 https://login.huitun.com/weChat/userLogin,然后再调用 https://dyapi.huitun.com/userLogin 接口。 登
成功绕过阿里无痕验证码,一键爬取飞瓜数据 飞瓜数据的登录接口,接入了阿里云的无痕验证码;通过接口方式模拟登录,难度比较高。所以,我们使用自动化的方式来实现模拟登录,并且获取到 cookie 数据。 [阿里无痕验证码] https://help.aliyun.com/document_detail/1
一文教你从零开始入门蝉妈妈数据爬取,成功逆向破解数据加密算法 通过接口进行模拟登录 我们先通过正常登录的方式,分析对应的登录接口。通过 F12 打开谷歌浏览器的调试面板,可以看到登录需要传递的一些参数;其中看到密码是被加密了。 不过我们通过经验可以大概猜测一下,应该是通过 md5 算法加密了。 接下
抽丝剥茧成功破解红人点集的签名加密算法 抽丝剥茧破解登录签名算法,成功实现模拟登录 headers = {} phone_num = "xxxx" password = "xxxx" md5_hash = hashlib.md5() md5_hash.upda
轻松绕过 Graphql 接口爬取有米有数的商品数据 有米有数数据的 API 接口,使用的是一种 API 查询语言 graphql。所有的 API 只有一个入口,具体的操作隐藏在请求数据体里面传输。 模拟登录,获取 sessionId 调用登录接口,进行模拟登录。 cookies = {} head
我最近重新拾起了计算机视觉,借助Python的opencv还有face_recognition库写了个简单的图像识别demo,额外定制了一些内容,原本想打包成exe然后发给朋友,不过在这当中遇到了许多小问题,都解决了,记录一下踩过的坑。 1、Pyinstaller打包过程当中出现warning,跟d
说到Pooling,相信学习过CNN的朋友们都不会感到陌生。Pooling在中文当中的意思是“池化”,在神经网络当中非常常见,通常用的比较多的一种是Max Pooling,具体操作如下图: 结合图像理解,相信你也会大概明白其中的本意。不过Pooling并不是只可以选取2x2的窗口大小,即便是3x3,
记得大一学Python的时候,有一个题目是判断一个数是否是复数。当时觉得比较复杂不好写,就琢磨了一个偷懒的好办法,用异常处理的手段便可以大大程度帮助你简短代码(偷懒)。以下是判断整数和复数的两段小代码: 相信看到这里,你也有所顿悟,能拓展出更多有意思的方法~
文章目录 3 直方图Histogramplot1. 基本直方图的绘制 Basic histogram2. 数据分布与密度信息显示 Control rug and density on seaborn histogram3. 带箱形图的直方图 Histogram with a boxplot on t