微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Python搞定pandas入门实例

对python这个高级语言感兴趣的小伙伴,下面一起跟随编程之家 jb51.cc的小编两巴掌来看看吧!

习惯上,我们做以下导入


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt

# End www.jb51.cc

创建对象

使用传递的值列表序列创建序列,让pandas创建认整数索引


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [4]: s = pd.Series([1,3,5,np.nan,6,8])
In [5]: s
Out[5]: 
0     1
1     3
2     5
3   NaN
4     6
5     8
dtype: float64

# End www.jb51.cc

使用传递的numpy数组创建数据帧,并使用日期索引和标记列.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [6]: dates = pd.date_range('20130101',periods=6)
In [7]: dates
Out[7]: [2013-01-01,...,2013-01-06]
Length: 6,Freq: D,Timezone: None
 
In [8]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))
In [9]: df
Out[9]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

# End www.jb51.cc

使用传递的可转换序列的字典对象创建数据帧.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [10]: df2 = pd.DataFrame({ 'A' : 1.,....:                      'B' : pd.Timestamp('20130102'),....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),....:                      'D' : np.array([3] * 4,dtype='int32'),....:                      'E' : pd.Categorical([test,train,test,train]),....:                      'F' : 'foo' })
   ....: 
In [11]: df2
Out[11]: 
   A          B  C  D      E    F
0  1 2013-01-02  1  3   test  foo
1  1 2013-01-02  1  3  train  foo
2  1 2013-01-02  1  3   test  foo
3  1 2013-01-02  1  3  train  foo

# End www.jb51.cc

所有明确类型


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [12]: df2.dtypes
Out[12]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

# End www.jb51.cc

如果你这个正在使用IPython,标签补全列名(以及公共属性)将自动启用。这里是将要完成的属性的子集:


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [13]: df2.
df2.A                  df2.Boxplot
df2.abs                df2.C
df2.add                df2.clip
df2.add_prefix         df2.clip_lower
df2.add_suffix         df2.clip_upper
df2.align              df2.columns
df2.all                df2.combine
df2.any                df2.combineAdd
df2.append             df2.combine_first
df2.apply              df2.combineMult
df2.applymap           df2.compound
df2.as_blocks          df2.consolidate
df2.asfreq             df2.convert_objects
df2.as_matrix          df2.copy
df2.astype             df2.corr
df2.at                 df2.corrwith
df2.at_time            df2.count
df2.axes               df2.cov
df2.B                  df2.cummax
df2.between_time       df2.cummin
df2.bfill              df2.cumprod
df2.blocks             df2.cumsum
df2.bool               df2.D

# End www.jb51.cc

如你所见,列 A,B,C,和 D 也是自动完成标签. E 也是可用的; 为了简便起见,后面的属性显示被截断.

查看数据

参阅基础部分

查看帧顶部和底部


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [14]: df.head()
Out[14]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
 
In [15]: df.tail(3)
Out[15]: 
                   A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

# End www.jb51.cc

显示索引,列,和底层numpy数据


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [16]: df.index
Out[16]: 
[2013-01-01,Timezone: None
 
In [17]: df.columns
Out[17]: Index([u'A',u'B',u'C',u'D'],dtype='object')
 
In [18]: df.values
Out[18]: 
array([[ 0.4691,-0.2829,-1.5091,-1.1356],[ 1.2121,-0.1732,0.1192,-1.0442],[-0.8618,-2.1046,-0.4949,1.0718],[ 0.7216,-0.7068,-1.0396,0.2719],[-0.425,0.567,0.2762,-1.0874],[-0.6737,0.1136,-1.4784,0.525 ]])

# End www.jb51.cc

描述显示数据快速统计摘要


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [19]: df.describe()
Out[19]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.073711 -0.431125 -0.687758 -0.233103
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706
max    1.212112  0.567020  0.276232  1.071804

# End www.jb51.cc

转置数据


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [20]: df.T
Out[20]: 
   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

# End www.jb51.cc

按轴排序


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [21]: df.sort_index(axis=1,ascending=False)
Out[21]: 
                   D         C         B         A
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
2013-01-02 -1.044236  0.119209 -0.173215  1.212112
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
2013-01-04  0.271860 -1.039575 -0.706771  0.721555
2013-01-05 -1.087401  0.276232  0.567020 -0.424972
2013-01-06  0.524988 -1.478427  0.113648 -0.673690

# End www.jb51.cc

按值排序


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [22]: df.sort(columns='B')
Out[22]: 
                   A         B         C         D
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

# End www.jb51.cc

选择器

注释: 标准Python / Numpy表达式可以完成这些互动工作,但在生产代码中,我们推荐使用优化的pandas数据访问方法,.at,.iat,.loc,.iloc 和 .ix.

参阅索引文档 索引和选择数据 and 多索引/高级索引

 

读取

选择单列,这会产生一个序列,等价df.A


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [23]: df['A']
Out[23]: 
2013-01-01    0.469112
2013-01-02    1.212112
2013-01-03   -0.861849
2013-01-04    0.721555
2013-01-05   -0.424972
2013-01-06   -0.673690
Freq: D,Name: A,dtype: float64

# End www.jb51.cc

 

使用[]选择行片断


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [24]: df[0:3]
Out[24]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
 
In [25]: df['20130102':'20130104']
Out[25]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

# End www.jb51.cc

使用标签选择

更多信息请参阅按标签选择

使用标签获取横截面


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [26]: df.loc[dates[0]]
Out[26]: 
A    0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00,dtype: float64

# End www.jb51.cc

使用标签选择多轴


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [27]: df.loc[:,['A','B']]
Out[27]: 
                   A         B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648

# End www.jb51.cc

 

显示标签切片,包含两个端点


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [28]: df.loc['20130102':'20130104','B']]
Out[28]: 
                   A         B
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771

# End www.jb51.cc

降低返回对象维度


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [29]: df.loc['20130102','B']]
Out[29]: 
A    1.212112
B   -0.173215
Name: 2013-01-02 00:00:00,dtype: float64

# End www.jb51.cc

获取标量值


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628

# End www.jb51.cc

快速访问并获取标量数据 (等价上面的方法)


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628

# End www.jb51.cc

按位置选择

更多信息请参阅按位置参阅

传递整数选择位置


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [32]: df.iloc[3]
Out[32]: 
A    0.721555
B   -0.706771
C   -1.039575
D    0.271860
Name: 2013-01-04 00:00:00,dtype: float64

# End www.jb51.cc

使用整数片断,效果类似numpy/python


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [33]: df.iloc[3:5,0:2]
Out[33]: 
                   A         B
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020

# End www.jb51.cc

使用整数偏移定位列表,效果类似 numpy/python 样式


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]: 
                   A         C
2013-01-02  1.212112  0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972  0.276232

# End www.jb51.cc

显式行切片


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [35]: df.iloc[1:3,:]
Out[35]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

# End www.jb51.cc

显式列切片


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [36]: df.iloc[:,1:3]
Out[36]: 
                   B         C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427

# End www.jb51.cc

显式获取一个


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330861

# End www.jb51.cc

 

快速访问一个标量(等同上个方法


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [38]: df.iat[1,1]
Out[38]: -0.17321464905330861

# End www.jb51.cc

布尔索引

使用单个列的值选择数据.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [39]: df[df.A > 0]
Out[39]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

# End www.jb51.cc

where 操作.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [40]: df[df > 0]
Out[40]: 
                   A         B         C         D
2013-01-01  0.469112       NaN       NaN       NaN
2013-01-02  1.212112       NaN  0.119209       NaN
2013-01-03       NaN       NaN       NaN  1.071804
2013-01-04  0.721555       NaN       NaN  0.271860
2013-01-05       NaN  0.567020  0.276232       NaN
2013-01-06       NaN  0.113648       NaN  0.524988

# End www.jb51.cc

 

使用 isin() 筛选:


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [41]: df2 = df.copy()
In [42]: df2['E']=['one','one','two','three','four','three']
 
In [43]: df2
Out[43]: 
                   A         B         C         D      E
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three
 
In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]: 
                   A         B         C         D     E
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

# End www.jb51.cc

赋值

赋值一个新列,通过索引自动对齐数据


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [45]: s1 = pd.Series([1,4,6],index=pd.date_range('20130102',periods=6))
In [46]: s1
Out[46]: 
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D,dtype: int64
 
In [47]: df['F'] = s1

# End www.jb51.cc

标签赋值


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [48]: df.at[dates[0],'A'] = 0

# End www.jb51.cc

按位置赋值


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [49]: df.iat[0,1] = 0

# End www.jb51.cc

通过numpy数组分配赋值


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

# End www.jb51.cc

之前的操作结果


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [51]: df
Out[51]: 
                   A         B         C  D   F
2013-01-01  0.000000  0.000000 -1.509059  5 NaN
2013-01-02  1.212112 -0.173215  0.119209  5   1
2013-01-03 -0.861849 -2.104569 -0.494929  5   2
2013-01-04  0.721555 -0.706771 -1.039575  5   3
2013-01-05 -0.424972  0.567020  0.276232  5   4
2013-01-06 -0.673690  0.113648 -1.478427  5   5

# End www.jb51.cc

where 操作赋值.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [52]: df2 = df.copy()
In [53]: df2[df2 > 0] = -df2
In [54]: df2
Out[54]: 
                   A         B         C  D   F
2013-01-01  0.000000  0.000000 -1.509059 -5 NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5  -1
2013-01-03 -0.861849 -2.104569 -0.494929 -5  -2
2013-01-04 -0.721555 -0.706771 -1.039575 -5  -3
2013-01-05 -0.424972 -0.567020 -0.276232 -5  -4
2013-01-06 -0.673690 -0.113648 -1.478427 -5  -5

# End www.jb51.cc

 

丢失的数据

pandas主要使用np.nan替换丢失的数据. 认情况下它并不包含在计算中. 请参阅 Missing Data section

重建索引允许更改/添加/删除指定轴索引,并返回数据副本.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [55]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + ['E'])
In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
In [57]: df1
Out[57]: 
                   A         B         C  D   F   E
2013-01-01  0.000000  0.000000 -1.509059  5 NaN   1
2013-01-02  1.212112 -0.173215  0.119209  5   1   1
2013-01-03 -0.861849 -2.104569 -0.494929  5   2 NaN
2013-01-04  0.721555 -0.706771 -1.039575  5   3 NaN

# End www.jb51.cc

删除任何有丢失数据的行.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [58]: df1.dropna(how='any')
Out[58]: 
                   A         B         C  D  F  E
2013-01-02  1.212112 -0.173215  0.119209  5  1  1

# End www.jb51.cc

填充丢失数据


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [59]: df1.fillna(value=5)
Out[59]: 
                   A         B         C  D  F  E
2013-01-01  0.000000  0.000000 -1.509059  5  5  1
2013-01-02  1.212112 -0.173215  0.119209  5  1  1
2013-01-03 -0.861849 -2.104569 -0.494929  5  2  5
2013-01-04  0.721555 -0.706771 -1.039575  5  3  5

# End www.jb51.cc

获取值是否nan的布尔标记


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [60]: pd.isnull(df1)
Out[60]: 
                A      B      C      D      F      E
2013-01-01  False  False  False  False   True  False
2013-01-02  False  False  False  False  False  False
2013-01-03  False  False  False  False  False   True
2013-01-04  False  False  False  False  False   True

# End www.jb51.cc

运算

参阅二元运算基础

统计

计算时一般不包括丢失的数据

执行描述性统计


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [61]: df.mean()
Out[61]: 
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64

# End www.jb51.cc

在其他轴做相同的运算


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [62]: df.mean(1)
Out[62]: 
2013-01-01    0.872735
2013-01-02    1.431621
2013-01-03    0.707731
2013-01-04    1.395042
2013-01-05    1.883656
2013-01-06    1.592306
Freq: D,dtype: float64

# End www.jb51.cc

用于运算的对象有不同的维度并需要对齐.除此之外,pandas会自动沿着指定维度计算.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [63]: s = pd.Series([1,8],index=dates).shift(2)
In [64]: s
Out[64]: 
2013-01-01   NaN
2013-01-02   NaN
2013-01-03     1
2013-01-04     3
2013-01-05     5
2013-01-06   NaN
Freq: D,dtype: float64
 
In [65]: df.sub(s,axis='index')
Out[65]: 
                   A         B         C   D   F
2013-01-01       NaN       NaN       NaN NaN NaN
2013-01-02       NaN       NaN       NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929   4   1
2013-01-04 -2.278445 -3.706771 -4.039575   2   0
2013-01-05 -5.424972 -4.432980 -4.723768   0  -1
2013-01-06       NaN       NaN       NaN NaN NaN
Apply

# End www.jb51.cc

在数据上使用函数


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [66]: df.apply(np.cumsum)
Out[66]: 
                   A         B         C   D   F
2013-01-01  0.000000  0.000000 -1.509059   5 NaN
2013-01-02  1.212112 -0.173215 -1.389850  10   1
2013-01-03  0.350263 -2.277784 -1.884779  15   3
2013-01-04  1.071818 -2.984555 -2.924354  20   6
2013-01-05  0.646846 -2.417535 -2.648122  25  10
2013-01-06 -0.026844 -2.303886 -4.126549  30  15
 
In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]: 
A    2.073961
B    2.671590
C    1.785291
D    0.000000
F    4.000000
dtype: float64

# End www.jb51.cc

直方图

请参阅 直方图和离散化


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [68]: s = pd.Series(np.random.randint(0,7,size=10))
In [69]: s
Out[69]: 
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int32
 
In [70]: s.value_counts()
Out[70]: 
4    5
6    2
2    2
1    1
dtype: int64

# End www.jb51.cc

字符串方法

序列可以使用一些字符串处理方法很轻易操作数据组中的每个元素,比如以下代码片断。 注意字符匹配方法认情况下通常使用正则表达式(并且大多数时候都如此). 更多信息请参阅字符串向量方法.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [71]: s = pd.Series(['A','B','C','Aaba','Baca','CABA','dog','cat'])
In [72]: s.str.lower()
Out[72]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

# End www.jb51.cc

合并

连接

pandas提供各种工具以简便合并序列,数据桢,和组合对象,在连接/合并类型操作中使用多种类型索引和相关数学函数.

请参阅合并部分

把pandas对象连接到一起


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [73]: df = pd.DataFrame(np.random.randn(10,4))
In [74]: df
Out[74]: 
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495
 
# break it into pieces
In [75]: pieces = [df[:3],df[3:7],df[7:]]
In [76]: pd.concat(pieces)
Out[76]: 
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

# End www.jb51.cc

连接

sql样式合并. 请参阅 数据库style联接


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [77]: left = pd.DataFrame({'key': ['foo','foo'],'lval': [1,2]})
In [78]: right = pd.DataFrame({'key': ['foo','rval': [4,5]})
In [79]: left
Out[79]: 
   key  lval
0  foo     1
1  foo     2
 
In [80]: right
Out[80]: 
   key  rval
0  foo     4
1  foo     5
 
In [81]: pd.merge(left,right,on='key')
Out[81]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

# End www.jb51.cc

添加

 

添加行到数据增. 参阅 添加


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [82]: df = pd.DataFrame(np.random.randn(8,columns=['A','D'])
In [83]: df
Out[83]: 
          A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
 
In [84]: s = df.iloc[3]
In [85]: df.append(s,ignore_index=True)
Out[85]: 
          A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
8  1.453749  1.208843 -0.080952 -0.264610

# End www.jb51.cc

分组

对于“group by”指的是以下一个或多个处理

将数据按某些标准分割为不同的组

在每个独立组上应用函数

组合结果为一个数据结构

请参阅 分组部分


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [86]: df = pd.DataFrame({'A' : ['foo','bar','foo',....:                          'foo',....:                    'B' : ['one',....:                          'two','three'],....:                    'C' : np.random.randn(8),....:                    'D' : np.random.randn(8)})
   ....: 
In [87]: df
Out[87]: 
     A      B         C         D
0  foo    one -1.202872 -0.055224
1  bar    one -1.814470  2.395985
2  foo    two  1.018601  1.552825
3  bar  three -0.595447  0.166599
4  foo    two  1.395433  0.047609
5  bar    two -0.392670 -0.136473
6  foo    one  0.007207 -0.561757
7  foo  three  1.928123 -1.623033

# End www.jb51.cc

分组然后应用函数统计总和存放到结果组


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [88]: df.groupby('A').sum()
Out[88]: 
            C        D
A                     
bar -2.802588  2.42611
foo  3.146492 -0.63958

# End www.jb51.cc

按多列分组为层次索引,然后应用函数


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [89]: df.groupby(['A','B']).sum()
Out[89]: 
                  C         D
A   B                        
bar one   -1.814470  2.395985
    three -0.595447  0.166599
    two   -0.392670 -0.136473
foo one   -1.195665 -0.616981
    three  1.928123 -1.623033
    two    2.414034  1.600434

# End www.jb51.cc

重塑

请参阅章节 分层索引 和 重塑.

 

堆叠


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [90]: tuples = list(zip(*[['bar','baz',....:                      'foo','qux','qux'],....:                     ['one',....:                      'one','two']]))
   ....: 
In [91]: index = pd.MultiIndex.from_tuples(tuples,names=['first','second'])
In [92]: df = pd.DataFrame(np.random.randn(8,2),index=index,'B'])
In [93]: df2 = df[:4]
In [94]: df2
Out[94]: 
                     A         B
first second                    
bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
baz   one    -1.575170  1.771208
      two     0.816482  1.100230

# End www.jb51.cc

堆叠 函数 “压缩” 数据桢的列一个级别.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [95]: stacked = df2.stack()
In [96]: stacked
Out[96]: 
first  second   
bar    one     A    0.029399
               B   -0.542108
       two     A    0.282696
               B   -0.087302
baz    one     A   -1.575170
               B    1.771208
       two     A    0.816482
               B    1.100230
dtype: float64

# End www.jb51.cc

被“堆叠”数据桢或序列(有多个索引作为索引),其堆叠的反向操作是未堆栈,上面的数据认反堆叠到上一级别:


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [97]: stacked.unstack()
Out[97]: 
                     A         B
first second                    
bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
baz   one    -1.575170  1.771208
      two     0.816482  1.100230
 
In [98]: stacked.unstack(1)
Out[98]: 
second        one       two
first                      
bar   A  0.029399  0.282696
      B -0.542108 -0.087302
baz   A -1.575170  0.816482
      B  1.771208  1.100230
 
In [99]: stacked.unstack(0)
Out[99]: 
first          bar       baz
second                      
one    A  0.029399 -1.575170
       B -0.542108  1.771208
two    A  0.282696  0.816482
       B -0.087302  1.100230

# End www.jb51.cc

 

数据透视表

查看数据透视表.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [100]: df = pd.DataFrame({'A' : ['one','three'] * 3,.....:                    'B' : ['A','C'] * 4,.....:                    'C' : ['foo','bar'] * 2,.....:                    'D' : np.random.randn(12),.....:                    'E' : np.random.randn(12)})
   .....: 
In [101]: df
Out[101]: 
        A  B    C         D         E
0     one  A  foo  1.418757 -0.179666
1     one  B  foo -1.879024  1.291836
2     two  C  foo  0.536826 -0.009614
3   three  A  bar  1.006160  0.392149
4     one  B  bar -0.029716  0.264599
5     one  C  bar -1.146178 -0.057409
6     two  A  foo  0.100900 -1.425638
7   three  B  foo -1.035018  1.024098
8     one  C  foo  0.314665 -0.106062
9     one  A  bar -0.773723  1.824375
10    two  B  bar -1.170653  0.595974
11  three  C  bar  0.648740  1.167115

# End www.jb51.cc

我们可以从此数据非常容易的产生数据透视表:


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [102]: pd.pivot_table(df,values='D',index=['A','B'],columns=['C'])
Out[102]: 
C             bar       foo
A     B                    
one   A -0.773723  1.418757
      B -0.029716 -1.879024
      C -1.146178  0.314665
three A  1.006160       NaN
      B       NaN -1.035018
      C  0.648740       NaN
two   A       NaN  0.100900
      B -1.170653       NaN
      C       NaN  0.536826

# End www.jb51.cc

时间序列

pandas有易用,强大且高效的函数用于高频数据重采样转换操作(例如,转换秒数据到5分钟数据),这是很普遍的情况,但并不局限于金融应用,请参阅时间序列章节


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [103]: rng = pd.date_range('1/1/2012',periods=100,freq='S')
In [104]: ts = pd.Series(np.random.randint(0,500,len(rng)),index=rng)
In [105]: ts.resample('5Min',how='sum')
Out[105]: 
2012-01-01    25083
Freq: 5T,dtype: int32

# End www.jb51.cc

时区表


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [106]: rng = pd.date_range('3/6/2012 00:00',periods=5,freq='D')
In [107]: ts = pd.Series(np.random.randn(len(rng)),rng)
In [108]: ts
Out[108]: 
2012-03-06    0.464000
2012-03-07    0.227371
2012-03-08   -0.496922
2012-03-09    0.306389
2012-03-10   -2.290613
Freq: D,dtype: float64
 
In [109]: ts_utc = ts.tz_localize('UTC')
In [110]: ts_utc
Out[110]: 
2012-03-06 00:00:00+00:00    0.464000
2012-03-07 00:00:00+00:00    0.227371
2012-03-08 00:00:00+00:00   -0.496922
2012-03-09 00:00:00+00:00    0.306389
2012-03-10 00:00:00+00:00   -2.290613
Freq: D,dtype: float64

# End www.jb51.cc

转换到其它时区


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [111]: ts_utc.tz_convert('US/Eastern')
Out[111]: 
2012-03-05 19:00:00-05:00    0.464000
2012-03-06 19:00:00-05:00    0.227371
2012-03-07 19:00:00-05:00   -0.496922
2012-03-08 19:00:00-05:00    0.306389
2012-03-09 19:00:00-05:00   -2.290613
Freq: D,dtype: float64

# End www.jb51.cc

 

转换不同的时间跨度


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [112]: rng = pd.date_range('1/1/2012',freq='M')
In [113]: ts = pd.Series(np.random.randn(len(rng)),index=rng)
In [114]: ts
Out[114]: 
2012-01-31   -1.134623
2012-02-29   -1.561819
2012-03-31   -0.260838
2012-04-30    0.281957
2012-05-31    1.523962
Freq: M,dtype: float64
 
In [115]: ps = ts.to_period()
In [116]: ps
Out[116]: 
2012-01   -1.134623
2012-02   -1.561819
2012-03   -0.260838
2012-04    0.281957
2012-05    1.523962
Freq: M,dtype: float64
 
In [117]: ps.to_timestamp()
Out[117]: 
2012-01-01   -1.134623
2012-02-01   -1.561819
2012-03-01   -0.260838
2012-04-01    0.281957
2012-05-01    1.523962
Freq: MS,dtype: float64

# End www.jb51.cc

 

转换时段并且使用一些运算函数,下例中,我们转换年报11月到季度结束每日上午9点数据


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [118]: prng = pd.period_range('1990Q1','2000Q4',freq='Q-NOV')
In [119]: ts = pd.Series(np.random.randn(len(prng)),prng)
In [120]: ts.index = (prng.asfreq('M','e') + 1).asfreq('H','s') + 9
In [121]: ts.head()
Out[121]: 
1990-03-01 09:00   -0.902937
1990-06-01 09:00    0.068159
1990-09-01 09:00   -0.057873
1990-12-01 09:00   -0.368204
1991-03-01 09:00   -1.144073
Freq: H,dtype: float64

# End www.jb51.cc

分类

自版本0.15起,pandas可以在数据桢中包含分类. 完整的文档,请查看分类介绍 and the api文档.

In [122]: df = pd.DataFrame({id:[1,raw_grade:['a','b','a','e']})

 

转换原始类别为分类数据类型.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [123]: df[grade] = df[raw_grade].astype(category)
In [124]: df[grade]
Out[124]: 
0    a
1    b
2    b
3    a
4    a
5    e
Name: grade,dtype: category
Categories (3,object): [a,b,e]

# End www.jb51.cc

重命令分类为更有意义的名称 (分配到Series.cat.categories对应位置!)


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [125]: df[grade].cat.categories = [very good,good,very bad]

# End www.jb51.cc

重排顺分类,同时添加缺少的分类(序列 .cat方法下返回新认序列)


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [126]: df[grade] = df[grade].cat.set_categories([very bad,bad,medium,very good])
In [127]: df[grade]
Out[127]: 
0    very good
1         good
2         good
3    very good
4    very good
5     very bad
Name: grade,dtype: category
Categories (5,object): [very bad,bad,medium,good,very good]

# End www.jb51.cc

排列分类中的顺序,不是按词汇排列.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [128]: df.sort(grade)
Out[128]: 
   id raw_grade      grade
5   6         e   very bad
1   2         b       good
2   3         b       good
0   1         a  very good
3   4         a  very good
4   5         a  very good

# End www.jb51.cc

类别列分组,并且也显示空类别.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [129]: df.groupby(grade).size()
Out[129]: 
grade
very bad      1
bad         NaN
medium      NaN
good          2
very good     3
dtype: float64

# End www.jb51.cc

绘图

绘图文档.


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [130]: ts = pd.Series(np.random.randn(1000),index=pd.date_range('1/1/2000',periods=1000))
In [131]: ts = ts.cumsum()
In [132]: ts.plot()
Out[132]:

# End www.jb51.cc

在数据桢中,可以很方便的绘制带标签列:


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [133]: df = pd.DataFrame(np.random.randn(1000,index=ts.index,.....:                   columns=['A','D'])
   .....: 
In [134]: df = df.cumsum()
In [135]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[135]:

# End www.jb51.cc

获取数据输入/输出

CSV

写入csv文件


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [136]: df.to_csv('foo.csv')

# End www.jb51.cc

读取csv文件


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [137]: pd.read_csv('foo.csv')
Out[137]: 
     Unnamed: 0          A          B         C          D
0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
4    2000-01-05   0.578117   0.511371  0.103552  -2.428202
5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
..          ...        ...        ...       ...        ...
993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
 
[1000 rows x 5 columns]

# End www.jb51.cc

 

HDF5

读写HDF存储

写入HDF5存储


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [138]: df.to_hdf('foo.h5','df')

# End www.jb51.cc

读取HDF5存储


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [139]: pd.read_hdf('foo.h5','df')
Out[139]: 
                    A          B         C          D
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2000-01-03  -1.734933   0.530468  2.060811  -0.515536
2000-01-04  -1.555121   1.452620  0.239859  -1.156896
2000-01-05   0.578117   0.511371  0.103552  -2.428202
2000-01-06   0.478344   0.449933 -0.741620  -1.962409
2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
...               ...        ...       ...        ...
2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
 
[1000 rows x 4 columns]

# End www.jb51.cc

 

Excel

读写MS Excel

写入excel文件


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [140]: df.to_excel('foo.xlsx',sheet_name='Sheet1')

# End www.jb51.cc

读取excel文件


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

In [141]: pd.read_excel('foo.xlsx','Sheet1',index_col=None,na_values=['NA'])
Out[141]: 
                    A          B         C          D
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2000-01-03  -1.734933   0.530468  2.060811  -0.515536
2000-01-04  -1.555121   1.452620  0.239859  -1.156896
2000-01-05   0.578117   0.511371  0.103552  -2.428202
2000-01-06   0.478344   0.449933 -0.741620  -1.962409
2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
...               ...        ...       ...        ...
2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
 
[1000 rows x 4 columns]

# End www.jb51.cc

陷阱

如果尝试这样操作可能会看到像这样的异常:


# @param 十分钟搞定pandas
# @author 编程之家 jb51.cc|www.www.jb51.cc 

>>> if pd.Series([False,True,False]):
    print(I was true)
Traceback
    ...
ValueError: The truth value of an array is ambiguous. Use a.empty,a.any() or a.all().

# End www.jb51.cc

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐