如何保证 redis 的高并发和高可用?redis 的主从复制原理能介绍一下么?redis 的哨兵原理能介绍一下么?
面试官心理分析:
其实问这个问题,主要是考考你,redis 单机能承载多高并发?如果单机扛不住如何扩容扛更多的并发?redis 会不会挂?既然 redis 会挂那怎么保证 redis 是高可用的?
其实针对的都是项目中你肯定要考虑的一些问题,如果你没考虑过,那确实你对生产系统中的问题思考太少。
面试题剖析:
如果你用 redis 缓存技术的话,肯定要考虑如何用 redis 来加多台机器,保证 redis 是高并发的,还有就是如何让 redis 保证自己不是挂掉以后就直接死掉了,即 redis 高可用。
由于此节内容较多,因此,会分为两个小节进行讲解。 - redis 主从架构 - redis 基于哨兵实现高可用
redis 实现高并发主要依靠主从架构,一主多从,一般来说,很多项目其实就足够了,单主用来写入数据,单机几万 QPS,多从用来查询数据,多个从实例可以提供每秒 10w 的 QPS。
如果想要在实现高并发的同时,容纳大量的数据,那么就需要 redis 集群,使用 redis 集群之后,可以提供每秒几十万的读写并发。
redis 高可用,如果是做主从架构部署,那么加上哨兵就可以了,就可以实现,任何一个实例宕机,可以进行主备切换。
redis学习总结
性能优化:
微服务:
并发编程:
开源框架:
总目录展示
该笔记共八个节点(由浅入深),分为三大模块。
高性能。 秒杀涉及大量的并发读和并发写,因此支持高并发访问这点非常关键。该笔记将从设计数据的动静分离方案、热点的发现与隔离、请求的削峰与分层过滤、服务端的极致优化这4个方面重点介绍。
一致性。 秒杀中商品减库存的实现方式同样关键。可想而知,有限数量的商品在同一时刻被很多倍的请求同时来减库存,减库存又分为“拍下减库存”“付款减库存”以及预扣等几种,在大并发更新的过程中都要保证数据的准确性,其难度可想而知。因此,将用一个节点来专门讲解如何设计秒杀减库存方案。
高可用。 虽然介绍了很多极致的优化思路,但现实中总难免出现一些我们考虑不到的情况,所以要保证系统的高可用和正确性,还要设计一个PlanB来兜底,以便在最坏情况发生时仍然能够从容应对。笔记的最后,将带你思考可以从哪些环节来设计兜底方案。
篇幅有限,无法一个模块一个模块详细的展示(这些要点都收集在了这份《高并发秒杀顶级教程》里),觉得有需要的码友们,麻烦各位转发一下(可以帮助更多的人看到哟!)点这里,即可获得免费下载的方式!!
由于内容太多,这里只截取部分的内容。需要这份《高并发秒杀顶级教程》的小伙伴,麻烦各位帮忙点赞分享支持一下(可以帮助更多的人看到哟!)
太多,这里只截取部分的内容。需要这份《高并发秒杀顶级教程》的小伙伴,麻烦各位帮忙点赞分享支持一下(可以帮助更多的人看到哟!)
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。