微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

正则化Regularization本质

参考:

http://www.cnblogs.com/maybe2030/p/9231231.html

https://blog.csdn.net/wsj998689aa/article/details/39547771

https://charlesliuyx.github.io/2017/10/03/%E3%80%90%E7%9B%B4%E8%A7%82%E8%AF%A6%E8%A7%A3%E3%80%91%E4%BB%80%E4%B9%88%E6%98%AF%E6%AD%A3%E5%88%99%E5%8C%96/

 

1、正则化是什么

正则化看起来有些抽象,其直译"规则化",本质其实很简单,就是给模型加一些规则限制,约束要优化参数,目的是防止过拟合。其中最常见的规则限制就是添加先验约束,其中L1相当于添加Laplace先验,L相当于添加Gaussian先验。

 

2、L1正则和L2正则

L1正则是在原始的loss函数加上一个L1正则化项,这个L1正则项实际就是在loss函数添加一个结构化风险项,因此正则化其实和“带约束的目标函数”是等价的。而L1正则项就是一个1范数,本质相当于添加一个Laplace先验知识。同理,L2正则化项是一个2范数,本质却相当于添加一个Gaussian先验知识。

参考http://www.cnblogs.com/heguanyou/p/7582578.html。

 

3、范数

参考:https://charlesliuyx.github.io/2017/10/03/%E3%80%90%E7%9B%B4%E8%A7%82%E8%AF%A6%E8%A7%A3%E3%80%91%E4%BB%80%E4%B9%88%E6%98%AF%E6%AD%A3%E5%88%99%E5%8C%96/

我们知道,范数(norm)的概念来源于泛函分析与测度理论,wiki中的定义相当简单明了:范数是具有“长度”概念的函数,用于衡量一个矢量的大小(测量矢量的测度)

我们常说测度测度,测量长度,也就是为了表征这个长度。而如何表达“长度”这个概念也是不同的,也就对应了不同的范数,本质上说,还是观察问题的方式和角度不同,比如那个经典问题,为什么矩形的面积是长乘以宽?这背后的关键是欧式空间的平移不变性,换句话说,就是面积和长成正比,所以才有这个

没有测度论就没有(现代)概率论。而概率论也是整个机器学习学科的基石之一。测度就像尺子,由于测量对象不同,我们需要直尺量布匹、皮尺量身披、卷尺量房间、游标卡尺量工件等等。注意,“尺子”与刻度(寸、米等)是两回事,不能混淆。

范数分为向量范数(二维坐标系)和矩阵范数(多维空间,一般化表达),如果不希望太数学化的解释,那么可以直观的理解为:0-范数:向量中非零元素的数量;1-范数:向量的元素的绝对值;2-范数:是通常意义上的模(距离)

 范数的图形表示见参考链接.

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐