这篇文章主要介绍了NumPy之ndarray运算函数操作方法有哪些的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇NumPy之ndarray运算函数操作方法有哪些文章都会有所收获,下面我们一起来看看吧。
NumPy比较运算符
NumPy中的比较运算符(>、<、==、!=、>=、<=)用于比较两个数组的元素是否满足一定的关系,结果是一个布尔类型的数组,其中 True 表示相应位置的元素满足条件,False 表示不满足。
常用的比较运算符:
运算符 | 说明 |
---|---|
大于(>) | 判断左侧的值是否大于右侧的值 |
小于(<) | 判断左侧的值是否小于右侧的值 |
等于(==) | 判断左侧的值是否等于右侧的值 |
不等于(!=) | 判断左侧的值是否不等于右侧的值 |
大于等于(>=) | 判断左侧的值是否大于或等于右侧的值 |
小于等于(<=) | 判断左侧的值是否小于或等于右侧的值 |
import numpy as np a = np.array([1, 2, 3]) b = np.array([2, 2, 2]) print(a > b) # 输出:[False False True] print(a < b) # 输出:[ True False False] print(a == b) # 输出:[False True False] print(a != b) # 输出:[ True False True] print(a >= b) # 输出:[False True True] print(a <= b) # 输出:[ True True False]
import numpy as np # 生成1-20范围 4行3列的二维数组 a = np.random.randint(1, 20, (4, 3)) print(a) print() # 取出前2行的前2列用于逻辑判断 b = a[:2, 0:2] # 逻辑判断, 如果大于10就标记为True 否则为False print(b > 10) print() # BOOL赋值, 将满足条件的设置为指定的值-布尔索引 b[b > 10] = 1 print(b)
[[ 5 16 5] [12 9 13] [ 8 18 11] [ 4 19 17]] [[False True] [ True False]] [[5 1] [1 9]]
NumPy逻辑运算符
逻辑运算符(&(与)、|(或)、^(异或)、~(非)):用于对布尔数组进行逻辑运算,返回一个布尔数组。
逻辑与
其中 "&" 运算符表示逻辑与,当所有操作数均为 True 时结果才为 True,否则结果为 False。
import numpy as np a = np.array([True, False, True]) b = np.array([False, True, True]) c = a & b # 对 a 和 b 进行与运算,返回一个布尔数组 print(c) # [False False True]
逻辑或
"|" 运算符表示逻辑或,在任意一个操作数为 True 时结果就为 True,只有所有操作数均为 False 时结果才为 False。
import numpy as np a = np.array([True, False, True]) b = np.array([False, True, True]) c = a | b print(c) # [ True True True]
逻辑异或
"^" 运算符表示逻辑异或,在两个操作数相同时结果为 False,在操作数不同时结果为 True。
import numpy as np a = np.array([True, False, True]) b = np.array([False, True, True]) c = a ^ b print(c) # [ True True False]
逻辑非
"~" 运算符表示逻辑非,对操作数取反。
import numpy as np a = np.array([True, False, True]) b = np.array([False, True, True]) c = ~a print(c) # False True False] c = ~b print(c) # [ True False False]
NumPy逻辑运算函数
函数名 | 对应运算符 | 说明 |
---|---|---|
logical_and() | & | 对两个数组执行逻辑AND运算 |
logical_or() | 丨 |
对两个数组执行逻辑OR运算 |
logical_not() | ~ | 对数组进行逻辑NOT运算 |
logical_xor() | ^ |
对数组进行逻辑异或XOR运算 |
logical_and()函数
logical_and()函数函数接受两个参数,返回一个布尔类型数组。
np.logical_and(x1, x2) :对两个数组 x1 和 x2 中的每个元素进行逻辑与运算,并将结果以一个新的布尔类型数组返回。对于同一位置上的元素,只有在都为 True 时,结果才为 True;否则,结果为 False。
import numpy as np a = np.array([True, True, False, False]) b = np.array([True, False, True, False]) c = np.logical_and(a, b) print(c) # True False False False] # 大于0.5并且小于3的,换为1,否则为0 c = np.array([1, 2, 3, 4, 5]) d = np.logical_and(c > 0.5, c < 3) print(d) # [ True True False False False] print(np.where(d, 1, 0)) # [1 1 0 0 0]
np.logical_or()函数
np.logical_or()函数接受两个参数,返回一个布尔类型数组。
np.logical_or(x1, x2) :对两个数组 x1 和 x2 中的每个元素进行逻辑或运算,并将结果以一个新的布尔类型数组返回。对于同一位置上的元素,只有在都为 False 时,结果才为 False;否则,结果为 True。
import numpy as np a = np.array([True, True, False, False]) b = np.array([True, False, True, False]) c = np.logical_or(a, b) print(c) # [ True True True False] # 大于0.5并且小于3的,换为1,否则为0 c = np.array([1, 2, 3, 4, 5]) d = np.logical_or(c > 0.5, c < 3) print(d) # [ True True True True True] print(np.where(d, 1, 0)) # [1 1 1 1 1]
logical_not()函数
np.logical_not(x):对 x 中的元素进行逻辑非(not)运算,返回一个新的数组。
import numpy as np a = np.array([True, False, True]) print(np.logical_not(a))# [False True False]
logical_xor()函数
np.logical_xor(x1, x2):对 x1 和 x2 中的元素进行逻辑异或(xor)运算,返回一个新的数组。
import numpy as np a = np.array([True, False, True]) b = np.array([False, True, True]) print(np.logical_xor(a, b)) # [ True True False]
NumPy判断函数
all(a)函数
np.all()函数用于测试数组中的所有元素是否都是True
import numpy as np a = np.array([1, 2, 3, 4]) b = np.array([0, 2, 3, 4]) print(np.all(a)) # True,因为所有元素都不为0 print(np.all(b)) # False,因为第一个元素为0 c = np.array([[1, 2, 3], [4, 5, 6]]) print(np.all(c)) # True,因为所有元素都不为0 # axis=0:沿着列方向测试所有元素是否都为True print(np.all(c, axis=0)) # [True True False] # axis=1:沿着行方向测试所有元素是否都为True print(np.all(c, axis=1)) # [True False] d = np.array([True, False, True]) print(np.all(d)) # 输出 False
any(a)函数
np.any()函数用于测试给定数组的任意元素是否为True。它返回一个布尔值,表示数组中是否有任意一个元素为True。
import numpy as np a = np.array([0, 1, 2]) print(np.any(a)) # 输出 True b = np.array([False, False, False]) print(np.any(b)) # 输出 False c = np.array([[True, False], [False, False]]) print(np.any(c)) # 输出 True d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(d[0:2, :2]) # [[1 2] [4 5]] print(np.any(d[0:2, :2] > 5 ))
isnan(x)函数
np.isnan(x)函数判断一个数是否为 NaN (not a number)
import numpy as np a = np.array([1, 2, np.nan, 4]) print(np.isnan(a)) # [False False True False]
isinf(x)函数
import numpy as np b = np.array([1, 2, np.inf, -np.inf]) print(np.isinf(b)) # [False False True True]
isfinite(x)函数
import numpy as np c = np.array([1, 2, np.nan, np.inf, -np.inf]) print(np.isfinite(c)) # [ True True False False False]
allclose(a, b)函数
np.allclose(a, b)函数判断两个数组是否在一定误差范围内相等
import numpy as np a = np.array([[1, 2], [3, 4]]) b = np.array([[1.01, 2.01], [3.01, 4.01]]) print(np.allclose(a, b)) # False print(np.allclose(a, b, rtol=0.02)) # True
array_equal(a, b)函数
np.array_equal(a, b)函数判断两个数组是否完全相同
import numpy as np a = np.array([1, 2, 3]) b = np.array([1, 2, 3]) print(np.array_equal(a, b)) # True c = np.array([1, 2, 3]) d = np.array([1, 2, 4]) print(np.array_equal(c, d)) # False
greater(x, y)函数
np.greater(x, y)函数 对比两个数组中的元素,返回一个表示 x 是否大于 y 的布尔数组
import numpy as np a = np.array([1, 2, 3]) b = np.array([2, 2, 2]) print(np.greater(a, b)) # [False False True]
less(x, y)函数
np.less(x, y)函数对比两个数组中的元素,返回一个表示 x 是否小于 y 的布尔数组
import numpy as np a = np.array([1, 2, 3]) b = np.array([2, 2, 2]) print(np.less(a, b)) # [ True False False]
equal(x, y)函数
np.equal(x, y)函数对比两个数组中的元素,返回一个表示 x 是否等于 y 的布尔数组
import numpy as np a = np.array([1, 2, 3]) b = np.array([1, 3, 3]) print(np.equal(a, b)) # [ True False True]
NumPy条件筛选函数
NumPy中可以使用条件筛选函数进行条件选择操作。
where()函数
numpy.where(condition, x, y)
where()函数说明:
np.where函数用于根据给定条件返回输入数组中满足条件的元素的索引或值。
参数:
condition:一个布尔型数组或条件表达式,用于指定筛选条件
x:满足条件时的返回值
y:不满足条件时的返回值
使用np.where函数找出数组a中大于3的元素的索引,并且将满足条件的元素从a和b对应位置的值中取出来
import numpy as np a = np.array([1, 2, 3, 4, 5]) b = np.array([10, 20, 30, 40, 50]) # 返回满足条件的元素的索引 indices = np.where(a > 3) print(indices) # (array([3, 4], dtype=int64),) # 返回满足条件的元素的值 values = np.where(a > 3, a, b) # 根据条件 (a > 3) 可以得到一个布尔类型的数组 [False False True True True]。对于这个数组中每个元素,如果是 True 则返回 a 数组中对应的元素,否则返回 b 数组中对应的元素。所以最终结果是 [10 20 30 4 5]。 print(values) # [10 20 30 4 5]
choose()函数
numpy.choose 函数可以根据给定的索引数组从一组备选的值中进行选择。
numpy.choose(a, choices, out=None, mode='raise')
a:表示从中选择值的整数数组,每个值必须是非负的且小于 len(choices) choices:表示备选值的序列。可以是列表、元组或数组等对象,且每个对象的形状必须相同 out:可选参数,表示输出数组 mode:表示边界处理方式,默认为 'raise'(抛出异常),还可以设置为 'wrap'(循环)或 'clip'(剪切)
import numpy as np # 定义选择数组a和备选值数组choices a = np.array([0, 1, 2, 2]) choices = (10, 11, 12, 13) # 使用 choose 函数进行选择 # 从 choices 中根据 a 中的索引进行选择,得到最终的结果数组。 result = np.choose(a, choices) print(result) # 输出 [10 11 12 12]
select()函数
numpy.select函数则是一种更加灵活的选择方式,它可以根据多个条件来进行选择。其函数签名为:
numpy.select(condlist, choicelist, default=0)
condlist:表示条件列表的序列。每个条件都是一个布尔数组,且所有条件必须具有相同形状。
choicelist:表示备选值的序列。每个备选值也必须具有相同的形状
default:可选参数,表示默认值
import numpy as np # 定义条件列表condlist和备选值列表choicelist condlist = [np.array([True, False]), np.array([False, True])] choicelist = [np.array([1, 2]), np.array([3, 4])] # 使用 select 函数进行选择 # 使用 numpy.select 函数根据条件列表从备选值列表中进行选择,得到最终的结果数组 result = np.select(condlist, choicelist) # 第一个条件为 [True, False],因此选择了第一个备选值 [1, 2] 中的第一个元素 1 # 第二个条件为 [False, True],因此选择了第二个备选值 [3, 4] 中的第二个元素 4。最终得到的结果为 [1, 4] print(result) # 输出 [1 4]
NumPy统计运算
统计运算是指对一组数据进行统计分析的运算,常见的统计运算包括:
求和(Sum):将一组数值加起来得到总和。 平均数(Mean):将一组数值相加后除以数量,得到平均值。 中位数(Median):将一组数值按从小到大的顺序排列,取中间的那个数值作为中位数。 众数(Mode):一组数值中出现次数最多的数值。 方差(Variance):表示数据集合各项数据与其平均数之差平方的平均数。 标准差(Standard Deviation):是方差的正平方根。 百分位数(percentile):将一组数值按从小到大的顺序排列,然后找出某个百分比所处的位置
求和(Sum)
numbers = [1, 2, 3, 4, 5] total = sum(numbers) print(total) # 输出:15
平均数(Mean)
numbers = [1, 2, 3, 4, 5] average = sum(numbers) / len(numbers) print(average) # 输出:3.0
中位数(Median)
import statistics numbers = [1, 2, 3, 4, 5] median = statistics.median(numbers) print(median) # 输出:3
众数(Mode)
from collections import Counter numbers = [1, 2, 3, 3, 4, 4, 4, 5, 5] counter = Counter(numbers) mode = counter.most_common(1)[0][0] print(mode) # 输出:4
方差(Variance)
import statistics numbers = [1, 2, 3, 4, 5] variance = statistics.variance(numbers) print(variance) # 输出:2.5
标准差(Standard Deviation)
import statistics numbers = [1, 2, 3, 4, 5] stdev = statistics.stdev(numbers) print(stdev) # 输出:1.5811388300841898
百分位数(percentile)
import numpy as np numbers = [1, 2, 3, 4, 5] percentile = np.percentile(numbers, 50) print(percentile) # 输出:3.0
NumPy算术函数
函数名 | 说明 |
---|---|
numpy.add() | 将两个数组相加 |
numpy.subtract() | 从第一个数组中减去第二个数组 |
numpy.multiply() | 将两个数组相乘 |
numpy.divide() | 将第一个数组除以第二个数组 |
numpy.power() | 对第一个数组中的每个元素求指数 |
numpy.mod() | 计算两个数组的元素之间的模数(余数) |
numpy.abs() | 返回数组中每个元素的绝对值 |
numpy.exp() | 对数组中的每个元素进行指数运算 |
numpy.log() | 对数组中的每个元素进行自然对数运算 |
两个数组相加
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = np.add(a, b) print(c) # [5 7 9]
NumPy数学函数
NumPy 提供了许多数学函数,用于对数组进行各种数学运算。
函数名 | 说明 |
---|---|
numpy.sin() | 计算数组中每个元素的正弦值。 |
numpy.cos() | 计算数组中每个元素的余弦值。 |
numpy.tan() | 计算数组中每个元素的正切值。 |
numpy.arcsin() | 计算数组中每个元素的反正弦值。 |
numpy.arccos() | 计算数组中每个元素的反余弦值。 |
numpy.arctan() | 计算数组中每个元素的反正切值。 |
numpy.exp() | 计算数组中每个元素的指数函数值。 |
numpy.log() | 计算数组中每个元素的自然对数值。 |
numpy.log10() | 计算数组中每个元素的以 10 为底的对数值。 |
计算数组中每个元素的正弦值:
import numpy as np arr = np.array([0, np.pi/2, np.pi]) sin_arr = np.sin(arr) print(sin_arr) # [0.0000000e+00 1.0000000e+00 1.2246468e-16]
NumPy字符串函数
NumPy提供了一些字符串函数,用于处理数组中的字符串元素。
函数名 | 说明 |
---|---|
numpy.char.add() | 将两个字符串连接为一个字符串 |
numpy.char.multiply() | 将字符串重复多次 |
numpy.char.lower() | 将字符串中的字母转换为小写 |
numpy.char.upper() | 将字符串中的字母转换为大写 |
numpy.char.title() | 将字符串中每个单词的首字母大写 |
numpy.char.split() | 将字符串分割成子字符串,并返回一个数组 |
numpy.char.strip() | 从字符串的开头和结尾删除空格或指定字符 |
numpy.char.replace() | 使用另一个字符串替换字符串中的指定字符 |
将两个字符串连接起来:
import numpy as np a = np.array(['Hello', 'world']) b = np.array(['!', '?']) c = np.char.add(a, b) print(c) # ['Hello!' 'world?']
NumPy排序函数
NumPy 提供了许多排序函数,用于对数组进行排序。
函数名 | 说明 |
---|---|
numpy.sort() | 对数组进行排序 |
numpy.argsort() | 返回数组中元素排序后的索引 |
numpy.lexsort() | 对多个序列进行排序 |
numpy.partition() | 按照指定顺序对数组进行分区 |
numpy.argpartition() | 返回将数组分成多个部分所需的索引 |
对数组进行排序,并返回排序后的索引:
import numpy as np arr = np.array([3, 8, 1, 6, 0]) sorted_indices = np.argsort(arr) print(sorted_indices) # [4 2 0 3 1]
关于“NumPy之ndarray运算函数操作方法有哪些”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“NumPy之ndarray运算函数操作方法有哪些”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注编程之家行业资讯频道。
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。