微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Hadoop输入和输出的处理类有哪些

这篇文章主要介绍了Hadoop输入和输出的处理类有哪些,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

hadoop输入的处理类

                    InputFormat

                                    InputFormat负责处理MR的输入部分。

                                    作用:

                                            1、验证作业的输入是否规范。

                                            2、把输入文件切分成InputSplit。

                                            3、提供RecordReader的实现类,把InputSplit读到Mapper中进行处理。

                    FileInputFormat

                                    FileInputFormat是所有以文件作为数据源的InputFormat实现的基类,FileInputFormat保存为Job输入的所有文件,并实现了对输入文件计算splits的方法。至于获得记录的方法是由不同的子类---TextInputFormat进行实现的。

                    TextInputFormat

                                    认的处理类,处理普通文本文件

                                    文件中每一行作为一个记录,他将每一行在文件中的起始偏移量作为key,每一行的内容作为value,认以\n或回车键作为一行记录。

                                    注意:TextInputFormat集成了FileInputFormat。

                    InputSplit

                                    在执行MapReduce之前,原始数据被分割成若干Split,每个Split作为一个Map任务的输入,在Map执行过程中Split会被分解成一个个记录(key-value键值对),Map会依次处理每一个记录。

                                    Hadoop将MapReduce的输入数据划分成等长的小数据块,称为输入分片(InputSplit)或简称分片。

                                    Hadoop为每个分片构建一个Map任务,并由该任务来运行用户自定义的Map函数从而处理分片中的每条记录。

                                    Hadoop在存储有输入数据(HDFS中的数据)的节点运行Map任务,可以获得最佳性能。这就是所谓的数据本地化优化。

                                    最佳分片的大小应该与块大小相同:

                                            因为它是确保可以存储在单个节点上的最大输入块的大小。如果分片跨越2个数据块,那么对于任何一个HDFS节点,基本上都不可能同时存储着2个数据块,因此分片中的部分数据需要通过网络传输到Map任务节点,。与使用本地数据运行整个Map任务相比,这种方法显然效率更低。

                    其他输入类

                                    CombineFileInputFormat

                                                相对于大量的小文件来说,Hadoop更合适处理少量的大文件

                                                CombineFileInputFormat可以缓解这个问题,它是针对小文件而设计的。

                                    keyvalueTextInputFormat

                                                当输入数据的每一行是两列,并用Tab分离的形式的时候,keyvalueTextInputFormat处理这种格式的文件非常适合。

                                    NlineInputFormat

                                                可以控制在每个Split中数据的行数。

                                    SequenceFileInputFormat

                                                当输入文件格式是SequenceFile的时候,要使用SequenceFileInputFormat作为输入。

                    自定义输入格式

                                    1、集成FileInputFormat基类;

                                    2、重写getSplits(JobContext context)方法

                                    3、重写createRecordReader(InputSplit split,TaskAttemptContext context)方法

Hadoop输出的处理类

                     textoutputFormat

                            认的输出格式,key和value中间值用Tab隔开的。

                    SequenceFileOutputFormat

                            将key和value以sequence格式输出

                    SequenceFileAsOutputFormat

                            将key和value以原始二进制的格式输出

                    MapFileOutputFormat

                            将key和value写入MapFile中,由于MapFile中的key是有序的,所以写入的时候必须保证记录是按Key值顺序写入的。

                    MultipleOutputFormat

                            认情况下一个Reduce会产生一个输出,但是有些时候我们想一个Reduce产生多个输出,MultipleOutputFormat和MultipleOutputs可以实现这个功能

感谢你能够认真阅读完这篇文章,希望小编分享的“Hadoop输入和输出的处理类有哪些”这篇文章对大家有帮助,同时也希望大家多多支持编程之家,关注编程之家行业资讯频道,更多相关知识等着你来学习!

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐