微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

hadoop-2.3.0-cdh5.1.0完全分布式集群配置及HA配置的示例分析

这篇文章主要介绍了hadoop-2.3.0-cdh5.1.0完全分布式集群配置及HA配置的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

一、安装前准备:
操作系统:CentOS 6.5 64位操作系统
环境:jdk1.7.0_45以上,本次采用jdk-7u55-linux-x64.tar.gz
master01 10.10.2.57 namenode 节点
master02 10.10.2.58 namenode 节点
slave01:10.10.2.173 datanode 节点
slave02:10.10.2.59 datanode 节点
slave03: 10.10.2.60 datanode 节点
注:Hadoop2.0以上采用的是jdk环境是1.7,Linux自带的jdk卸载掉,重新安装
下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html
软件版本:hadoop-2.3.0-cdh6.1.0.tar.gz, zookeeper-3.4.5-cdh6.1.0.tar.gz
下载地址:http://archive.cloudera.com/cdh6/cdh/5/
开始安装:
二、jdk安装
1、检查是否自带jdk
rpm -qa | grep jdk
java-1.6.0-openjdk-1.6.0.0-1.45.1.11.1.el6.i686 
2、卸载自带jdk
yum -y remove java-1.6.0-openjdk-1.6.0.0-1.45.1.11.1.el6.i686
3、安装jdk-7u55-linux-x64.tar.gz
在usr/目录下创建文件夹java,在java文件夹下运行tar –zxvf jdk-7u55-linux-x64.tar.gz
解压到java目录下
[root@master01 java]# ls
jdk1.7.0_55
三、配置环境变量
远行vi /etc/profile
# /etc/profile
# System wide environment and startup programs, for login setup
# Functions and aliases go in /etc/bashrc
export JAVA_HOME=/usr/java/jdk1.7.0_55
export JRE_HOME=/usr/java/jdk1.7.0_55/jre
export CLAsspATH=/usr/java/jdk1.7.0_55/lib
export PATH=$JAVA_HOME/bin: $PATH
保存修改,运行source /etc/profile 重新加载环境变量
运行java -version
[root@master01 java]# java -version
java version "1.7.0_55"
Java(TM) SE Runtime Environment (build 1.7.0_55-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.55-b03, mixed mode)
Jdk配置成功
四、系统配置
预先准备5台机器,并配置IP
关闭防火墙
chkconfig iptables off(永久性关闭)
配置主机名和hosts文件
[root@master01 java]# vi /etc/hosts
127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
10.10.2.57 master01
10.10.2.58 master02
10.10.2.173 slave01
10.10.2.59 slave02
10.10.2.60 slave03
按照不同机器IP配置不同的主机名
3、SSH无密码验证配置
因为Hadoop运行过程需要远程管理Hadoop的守护进程,NameNode节点需要通过SSH(Secure Shell)链接各个Datanode节点,停止或启动他们的进程,所以SSH必须是没有密码的,所以我们要把NameNode节点和Datanode节点配制成无秘密通信,同理Datanode也需要配置无密码链接NameNode节点。
在每一台机器上配置:
vi /etc/ssh/sshd_config打开
RSAAuthentication yes # 启用 RSA 认证,PubkeyAuthentication yes # 启用公钥私钥配对认证方式
Master01:运行:ssh-keygen –t rsa –P ''  不输入密码直接enter
认存放在 /root/.ssh目录下,
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
[root@master01 .ssh]# ls
authorized_keys  id_rsa  id_rsa.pub  kNown_hosts
slave01执行相同的操作,然后将master01 /root/.ssh/目录下的id_rsa.pub放到 slave01 相同目录下的authorized_keys这样slave01就持有了master01的公钥 然后直接ssh slave01测试是否可以无密码连接到slave01上,然后将slave01 上的id_rsa.pub 追加到master01的authorized_keys中,测试ssh master01 是否可以直接连上slave01.
[root@master01 ~]# ssh slave01
Last login: Tue Aug 19 14:28:15 2014 from master01
[root@slave01 ~]# 
Master01-master02
Master01-slave01
Master01-slave02
Master01-slave03
Master02-slave01
Master02-slave02
Master02-slave03
执行相同的操作。
 
五、安装Hadoop
建立文件目录 /usr/local/cloud 创建文件夹data,存放数据、日志文件,haooop原文件,zookeeper原文件
[root@slave01 cloud]# ls
data  hadoop  tar  zookeeper
5.1、配置hadoop-env.sh
进入到/usr/local/cloud/hadoop/etc/hadoop目录下
配置vi hadoop-env.sh hadoop运行环境加载
export JAVA_HOME=/usr/java/jdk1.7.0_55
5.2、配置core-site.xml
<!—hadoop.tmp.dir:hadoop很多路径都依赖他,namenode节点该目录不可以删除,否则需要重新格式化-->
<property>
    <name>hadoop.tmp.dir</name>
    <value>/usr/local/cloud/data/hadoop/tmp</value>
</property>
<!—这个配置文件描述了集群的namenode节点的url,这里采用HA代表认逻辑名,集群中的每个datanode节点都需要知道namenode的地址,数据才可以被使用-->
<property>
    <name>fs.defaultFS</name>
    <value>hdfs://zzg</value>
</property>
<!-- zookeeper集群的地址和端口,最好保持基数个至少3台-->
 <property>
    <name>ha.zookeeper.quorum</name>
    <value>master01:2181,slave01:2181,slave02:2181</value>
</property>
 
(2)hdfs-site.xml配置
<!—hadoop namenode数据的存储目录,只是针对与namenode,包含了namenode的系统信息元数据信息-->
<property>
    <name>dfs.namenode.name.dir</name>
    <value>/usr/local/cloud/data/hadoop/dfs/nn</value>
</property>
<!—datanode 要存储到数据到本地的路径,不必每一台机器都一样,但是为了方便管理最好还是一样-->
<property>
    <name>dfs.datanode.data.dir</name>
    <value>/usr/local/cloud/data/hadoop/dfs/dn</value>
</property>
<!—系统中文件备份数量,系统认是3分-->
<property>
    <name>dfs.replication</name>
    <value>3</value>
</property>
<!-- dfs.webhdfs.enabled 置为true,否则一些命令无法使用如:webhdfs的LISTSTATUS -->
<property>
    <name>dfs.webhdfs.enabled</name>
    <value>true</value>
</property>
<!—可选,关闭权限带来一些不必要的麻烦-->
<property>
     <name>dfs.permissions</name>
     <value>false</value>
</property>
<!—可选,关闭权限带来一些不必要的麻烦-->
<property>
     <name>dfs.permissions.enabled</name>
     <value>false</value>
</property>
<!—HA配置-->
<!—设置集群的逻辑名-->
<property>
    <name>dfs.nameservices</name>
    <value>zzg</value>
</property>
<!—hdfs联邦集群中的namenode节点逻辑名-->
<property>
    <name>dfs.ha.namenodes.zzg</name>
    <value>nn1,nn2</value>
</property>
<!—hdfs namenode逻辑名中RPC配置,rpc 简单理解为序列化文件上传输出文件要用到-->
<property>
    <name>dfs.namenode.rpc-address.zzg.nn1</name>
    <value>master01:9000</value>
</property>
<property>
    <name>dfs.namenode.rpc-address.zzg.nn2</name>
    <value>master02:9000</value>
</property>
<!—配置hadoop页面访问端口端口-->
<property>
    <name>dfs.namenode.http-address.zzg.nn1</name>
    <value>master01:50070</value>
</property>
<property>
    <name>dfs.namenode.http-address.zzg.nn2</name>
    <value>master02:50070</value>
</property>
<!—建立与namenode的通信-->
<property>
    <name>dfs.namenode.servicerpc-address.zzg.nn1</name>
    <value>master01:53310</value>
</property>
<property>
    <name>dfs.namenode.servicerpc-address.zzg.nn2</name>
    <value>master02:53310</value>
</property>
<!—journalnode 共享文件集群-->
<property>
    <name>dfs.namenode.shared.edits.dir</name>
    <value>qjournal://master01:8485;slave01:8485;slave02:8485/zzg</value>
</property>
 <!—journalnode对namenode的进行共享设置-->
<property>
    <name>dfs.journalnode.edits.dir</name>
    <value>/usr/local/cloud/data/hadoop/ha/journal</value>
</property>
<!—设置故障处理类-->
<property>
    <name>dfs.client.failover.proxy.provider.zzg</name>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!—开启自动切换-->
<property>
    <name>dfs.ha.automatic-failover.enabled</name>
    <value>true</value>
</property>
<property>
        <name>ha.zookeeper.quorum</name>
        <value>master01:2181,slave01:2181,slave02:2181</value>
</property>
<!—使用ssh方式进行故障切换-->
<property>
    <name>dfs.ha.fencing.methods</name>
    <value>sshfence</value>
</property>
<!—ssh通信密码通信位置-->
<property>
    <name>dfs.ha.fencing.ssh.private-key-files</name>
    <value>/root/.ssh/id_rsa</value>
</property>
5.3 配置maped-site.xml
<property>
                <name>mapreduce.framework.name</name>
                <value>yarn</value>
</property>
5.4配置yarn HA 
配置yarn-en.sh java环境
# some Java parameters
  export JAVA_HOME=/usr/java/jdk1.7.0_55
5.5配置yarn-site.xml
        <!—rm失联后重新链接的时间-->
        <property>
                <name>yarn.resourcemanager.connect.retry-interval.ms</name>
                <value>2000</value>
        </property>
        <!—开启resource manager HA,认为false-->
         <property>
                <name>yarn.resourcemanager.ha.enabled</name>
                <value>true</value>
        </property>
        <!—开启故障自动切换-->
        <property>
                <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
                <value>true</value>
        </property>
        <!—配置resource manager -->
        <property>
                <name>yarn.resourcemanager.ha.rm-ids</name>
                <value>rm1,rm2</value>
        </property>
        <!—在master01上配置rm1,在master02上配置rm2,-->
        <property>
                <name>yarn.resourcemanager.ha.id</name>
                <value>rm1</value>
               <description>If we want to launch more than one RM in single node, we need this configuration</description>
         </property>
        <!—开启自动恢复功能-->
         <property>
                <name>yarn.resourcemanager.recovery.enabled</name>
                 <value>true</value>
        </property>
        <!—配置与zookeeper的连接地址-->
        <property>
                <name>yarn.resourcemanager.zk-state-store.address</name>
                <value>localhost:2181</value>
        </property>
 
        <property>
                <name>yarn.resourcemanager.store.class</name>
                <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
        </property>
        <property>
                <name>yarn.resourcemanager.zk-address</name>
                <value>localhost:2181</value>
        </property>
        <property>
                <name>yarn.resourcemanager.cluster-id</name>
                <value>yarn-cluster</value>
        </property>
        <!—schelduler失联等待连接时间-->
         <property>
                <name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
                <value>5000</value>
        </property>
        <!—配置rm1-->
        <property>
                <name>yarn.resourcemanager.address.rm1</name>
                <value>master01:23140</value>
        </property>
        <property>
                <name>yarn.resourcemanager.scheduler.address.rm1</name>
                <value>master01:23130</value>
        </property>
        <property>
                <name>yarn.resourcemanager.webapp.address.rm1</name>
                <value>master01:23188</value>
        </property>
        <property>
                <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
                <value>master01:23125</value>
        </property>
         <property>
                <name>yarn.resourcemanager.admin.address.rm1</name>
                <value>master01:23141</value>
        </property>
        <property>
                <name>yarn.resourcemanager.ha.admin.address.rm1</name>
                <value>master01:23142</value>
        </property>
        <!—配置rm2-->
         <property>
                <name>yarn.resourcemanager.address.rm2</name>
                <value>master02:23140</value>
        </property>
        <property>
                <name>yarn.resourcemanager.scheduler.address.rm2</name>
                <value>master02:23130</value>
        </property>
        <property>
                <name>yarn.resourcemanager.webapp.address.rm2</name>
                <value>master02:23188</value>
        </property>
        <property>
                <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
                <value>master02:23125</value>
        </property>
        <property>
                <name>yarn.resourcemanager.admin.address.rm2</name>
                <value>master02:23141</value>
        </property>
        <property>
                <name>yarn.resourcemanager.ha.admin.address.rm2</name>
                <value>master02:23142</value>
        </property>
        <!—配置nodemanager-->
        <property>
                <description>Address where the localizer IPC is.</description>
                <name>yarn.nodemanager.localizer.address</name>
                <value>0.0.0.0:23344</value>
        </property>
        <!—nodemanager http访问端口-->
         <property>
                <description>NM Webapp address.</description>
                <name>yarn.nodemanager.webapp.address</name>
                <value>0.0.0.0:23999</value>
        </property>
        <property>
                <name>yarn.nodemanager.aux-services</name>
                <value>mapreduce_shuffle</value>
        </property>
        <property>
                <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
                <value>org.apache.hadoop.mapred.ShuffleHandler</value>
        </property>
        <property>
                <name>yarn.nodemanager.local-dirs</name>
                <value>/usr/local/cloud/data/hadoop/yarn/local</value>
        </property>
        <property>
                <name>yarn.nodemanager.log-dirs</name>
                <value>/usr/local/cloud/data/logs/hadoop</value>
        </property>
        <property>
                <name>mapreduce.shuffle.port</name>
                <value>23080</value>
        </property>
        <!—故障处理类-->
         <property>
                <name>yarn.client.failover-proxy-provider</name>
                 <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
         </property>
六、配置zookeeper集群
在zookeeper目录下建立data目录 和logs目录,
配置zoo.cnf
dataDir=/usr/local/cloud/zookeeper/data
dataLogDir=/usr/local/cloud/zookeeper/logs
# the port at which the clients will connect
clientPort=2181
server.1=master01:2888:3888
server.2=master02:2888:3888
server.3=slave01:2888:3888
server.4=slave02:2888:3888
server.5=slave03:2888:3888
在data目录下创建myid文件,并在对应的机器上填写数字,如上配置master01 server01 的myid写入1,
master02 中的data的myid写入2,依次在其他机子上执行相同操作。
在各个机器下zookeeper目录下的bin目录下执行zkServer.sh start命令
再运行zkServer.sh status如果出现leader 或fllower 则说明集群配置正确。
 
到此各个配置文件配置完毕
七、启动Hadoop集群严格按照以下顺序执行(第一次)
(1)各个节点启动zookeeper,在zookeeper/bin/zkServer.sh start
(2) 在hadoop/bin/hdfs zkfc –formatZK 进行格式化创建命名空间
(3)在配置了journalnode的节点启动,master01,slave01,slave02
   在hadoop/sbin/hadoop-daemon.sh  journalnode
(4)在主namenode节点执行格式化
./bin/hadoop namenode -format zzg
 主机器上启动namenode
 hadoop/sbin/ hadoop-daemon.sh start namenode
(5)将主namenode节点格式化的目录拷贝到从主namenode节点上
hadoop/bin/hdfs namenode –bootstrapStandby
hadoop/sbin/hadoop-daemon.sh start namenode
(6) 在两个namenode节点都执行以下命令
./sbin/hadoop-daemon.sh start zkfc
(7) 在所有datanode节点都执行以下命令启动datanode
./sbin/hadoop-daemon.sh start datanode
(8)在主namenode节点启动yarn,运行yarn-start.sh命令
jps可以看到
namenode节点
[root@master01 ~]# jps
38972 JournalNode
38758 NameNode
39166 DFSZKFailoverController
37473 QuorumPeerMain
39778 ResourceManager
42620 Jps
datanode节点
[root@slave01 ~]# jps
33440 Datanode
35277 Jps
32681 QuorumPeerMain
33568 JournalNode
34231 NodeManager

感谢你能够认真阅读完这篇文章,希望小编分享的“hadoop-2.3.0-cdh5.1.0完全分布式集群配置及HA配置的示例分析”这篇文章对大家有帮助,同时也希望大家多多支持编程之家,关注编程之家行业资讯频道,更多相关知识等着你来学习!

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐