这篇文章主要介绍了hadoop-2.3.0-cdh5.1.0完全分布式集群配置及HA配置的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
一、安装前准备: 操作系统:CentOS 6.5 64位操作系统 环境:jdk1.7.0_45以上,本次采用jdk-7u55-linux-x64.tar.gz master01 10.10.2.57 namenode 节点 master02 10.10.2.58 namenode 节点 slave01:10.10.2.173 datanode 节点 slave02:10.10.2.59 datanode 节点 slave03: 10.10.2.60 datanode 节点 注:Hadoop2.0以上采用的是jdk环境是1.7,Linux自带的jdk卸载掉,重新安装 下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 软件版本:hadoop-2.3.0-cdh6.1.0.tar.gz, zookeeper-3.4.5-cdh6.1.0.tar.gz 下载地址:http://archive.cloudera.com/cdh6/cdh/5/ 开始安装: 二、jdk安装 1、检查是否自带jdk rpm -qa | grep jdk java-1.6.0-openjdk-1.6.0.0-1.45.1.11.1.el6.i686 2、卸载自带jdk yum -y remove java-1.6.0-openjdk-1.6.0.0-1.45.1.11.1.el6.i686 3、安装jdk-7u55-linux-x64.tar.gz 在usr/目录下创建文件夹java,在java文件夹下运行tar –zxvf jdk-7u55-linux-x64.tar.gz 解压到java目录下 [root@master01 java]# ls jdk1.7.0_55 三、配置环境变量 远行vi /etc/profile # /etc/profile # System wide environment and startup programs, for login setup # Functions and aliases go in /etc/bashrc export JAVA_HOME=/usr/java/jdk1.7.0_55 export JRE_HOME=/usr/java/jdk1.7.0_55/jre export CLAsspATH=/usr/java/jdk1.7.0_55/lib export PATH=$JAVA_HOME/bin: $PATH 保存修改,运行source /etc/profile 重新加载环境变量 运行java -version [root@master01 java]# java -version java version "1.7.0_55" Java(TM) SE Runtime Environment (build 1.7.0_55-b13) Java HotSpot(TM) 64-Bit Server VM (build 24.55-b03, mixed mode) Jdk配置成功 四、系统配置 预先准备5台机器,并配置IP 关闭防火墙 chkconfig iptables off(永久性关闭) 配置主机名和hosts文件 [root@master01 java]# vi /etc/hosts 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 localhost6.localdomain6 10.10.2.57 master01 10.10.2.58 master02 10.10.2.173 slave01 10.10.2.59 slave02 10.10.2.60 slave03 按照不同机器IP配置不同的主机名 3、SSH无密码验证配置 因为Hadoop运行过程需要远程管理Hadoop的守护进程,NameNode节点需要通过SSH(Secure Shell)链接各个Datanode节点,停止或启动他们的进程,所以SSH必须是没有密码的,所以我们要把NameNode节点和Datanode节点配制成无秘密通信,同理Datanode也需要配置无密码链接NameNode节点。 在每一台机器上配置: vi /etc/ssh/sshd_config打开 RSAAuthentication yes # 启用 RSA 认证,PubkeyAuthentication yes # 启用公钥私钥配对认证方式 Master01:运行:ssh-keygen –t rsa –P '' 不输入密码直接enter 默认存放在 /root/.ssh目录下, cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys [root@master01 .ssh]# ls authorized_keys id_rsa id_rsa.pub kNown_hosts slave01执行相同的操作,然后将master01 /root/.ssh/目录下的id_rsa.pub放到 slave01 相同目录下的authorized_keys这样slave01就持有了master01的公钥 然后直接ssh slave01测试是否可以无密码连接到slave01上,然后将slave01 上的id_rsa.pub 追加到master01的authorized_keys中,测试ssh master01 是否可以直接连上slave01. [root@master01 ~]# ssh slave01 Last login: Tue Aug 19 14:28:15 2014 from master01 [root@slave01 ~]# Master01-master02 Master01-slave01 Master01-slave02 Master01-slave03 Master02-slave01 Master02-slave02 Master02-slave03 执行相同的操作。 五、安装Hadoop 建立文件目录 /usr/local/cloud 创建文件夹data,存放数据、日志文件,haooop原文件,zookeeper原文件 [root@slave01 cloud]# ls data hadoop tar zookeeper 5.1、配置hadoop-env.sh 进入到/usr/local/cloud/hadoop/etc/hadoop目录下 配置vi hadoop-env.sh hadoop运行环境加载 export JAVA_HOME=/usr/java/jdk1.7.0_55 5.2、配置core-site.xml <!—hadoop.tmp.dir:hadoop很多路径都依赖他,namenode节点该目录不可以删除,否则需要重新格式化--> <property> <name>hadoop.tmp.dir</name> <value>/usr/local/cloud/data/hadoop/tmp</value> </property> <!—这个配置文件描述了集群的namenode节点的url,这里采用HA代表默认逻辑名,集群中的每个datanode节点都需要知道namenode的地址,数据才可以被使用--> <property> <name>fs.defaultFS</name> <value>hdfs://zzg</value> </property> <!-- zookeeper集群的地址和端口,最好保持基数个至少3台--> <property> <name>ha.zookeeper.quorum</name> <value>master01:2181,slave01:2181,slave02:2181</value> </property> (2)hdfs-site.xml配置 <!—hadoop namenode数据的存储目录,只是针对与namenode,包含了namenode的系统信息元数据信息--> <property> <name>dfs.namenode.name.dir</name> <value>/usr/local/cloud/data/hadoop/dfs/nn</value> </property> <!—datanode 要存储到数据到本地的路径,不必每一台机器都一样,但是为了方便管理最好还是一样--> <property> <name>dfs.datanode.data.dir</name> <value>/usr/local/cloud/data/hadoop/dfs/dn</value> </property> <!—系统中文件备份数量,系统默认是3分--> <property> <name>dfs.replication</name> <value>3</value> </property> <!-- dfs.webhdfs.enabled 置为true,否则一些命令无法使用如:webhdfs的LISTSTATUS --> <property> <name>dfs.webhdfs.enabled</name> <value>true</value> </property> <!—可选,关闭权限带来一些不必要的麻烦--> <property> <name>dfs.permissions</name> <value>false</value> </property> <!—可选,关闭权限带来一些不必要的麻烦--> <property> <name>dfs.permissions.enabled</name> <value>false</value> </property> <!—HA配置--> <!—设置集群的逻辑名--> <property> <name>dfs.nameservices</name> <value>zzg</value> </property> <!—hdfs联邦集群中的namenode节点逻辑名--> <property> <name>dfs.ha.namenodes.zzg</name> <value>nn1,nn2</value> </property> <!—hdfs namenode逻辑名中RPC配置,rpc 简单理解为序列化文件上传输出文件要用到--> <property> <name>dfs.namenode.rpc-address.zzg.nn1</name> <value>master01:9000</value> </property> <property> <name>dfs.namenode.rpc-address.zzg.nn2</name> <value>master02:9000</value> </property> <!—配置hadoop页面访问端口端口--> <property> <name>dfs.namenode.http-address.zzg.nn1</name> <value>master01:50070</value> </property> <property> <name>dfs.namenode.http-address.zzg.nn2</name> <value>master02:50070</value> </property> <!—建立与namenode的通信--> <property> <name>dfs.namenode.servicerpc-address.zzg.nn1</name> <value>master01:53310</value> </property> <property> <name>dfs.namenode.servicerpc-address.zzg.nn2</name> <value>master02:53310</value> </property> <!—journalnode 共享文件集群--> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://master01:8485;slave01:8485;slave02:8485/zzg</value> </property> <!—journalnode对namenode的进行共享设置--> <property> <name>dfs.journalnode.edits.dir</name> <value>/usr/local/cloud/data/hadoop/ha/journal</value> </property> <!—设置故障处理类--> <property> <name>dfs.client.failover.proxy.provider.zzg</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <!—开启自动切换--> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property> <property> <name>ha.zookeeper.quorum</name> <value>master01:2181,slave01:2181,slave02:2181</value> </property> <!—使用ssh方式进行故障切换--> <property> <name>dfs.ha.fencing.methods</name> <value>sshfence</value> </property> <!—ssh通信密码通信位置--> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/root/.ssh/id_rsa</value> </property> 5.3 配置maped-site.xml <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> 5.4配置yarn HA 配置yarn-en.sh java环境 # some Java parameters export JAVA_HOME=/usr/java/jdk1.7.0_55 5.5配置yarn-site.xml <!—rm失联后重新链接的时间--> <property> <name>yarn.resourcemanager.connect.retry-interval.ms</name> <value>2000</value> </property> <!—开启resource manager HA,默认为false--> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <!—开启故障自动切换--> <property> <name>yarn.resourcemanager.ha.automatic-failover.enabled</name> <value>true</value> </property> <!—配置resource manager --> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <!—在master01上配置rm1,在master02上配置rm2,--> <property> <name>yarn.resourcemanager.ha.id</name> <value>rm1</value> <description>If we want to launch more than one RM in single node, we need this configuration</description> </property> <!—开启自动恢复功能--> <property> <name>yarn.resourcemanager.recovery.enabled</name> <value>true</value> </property> <!—配置与zookeeper的连接地址--> <property> <name>yarn.resourcemanager.zk-state-store.address</name> <value>localhost:2181</value> </property> <property> <name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value> </property> <property> <name>yarn.resourcemanager.zk-address</name> <value>localhost:2181</value> </property> <property> <name>yarn.resourcemanager.cluster-id</name> <value>yarn-cluster</value> </property> <!—schelduler失联等待连接时间--> <property> <name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name> <value>5000</value> </property> <!—配置rm1--> <property> <name>yarn.resourcemanager.address.rm1</name> <value>master01:23140</value> </property> <property> <name>yarn.resourcemanager.scheduler.address.rm1</name> <value>master01:23130</value> </property> <property> <name>yarn.resourcemanager.webapp.address.rm1</name> <value>master01:23188</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address.rm1</name> <value>master01:23125</value> </property> <property> <name>yarn.resourcemanager.admin.address.rm1</name> <value>master01:23141</value> </property> <property> <name>yarn.resourcemanager.ha.admin.address.rm1</name> <value>master01:23142</value> </property> <!—配置rm2--> <property> <name>yarn.resourcemanager.address.rm2</name> <value>master02:23140</value> </property> <property> <name>yarn.resourcemanager.scheduler.address.rm2</name> <value>master02:23130</value> </property> <property> <name>yarn.resourcemanager.webapp.address.rm2</name> <value>master02:23188</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address.rm2</name> <value>master02:23125</value> </property> <property> <name>yarn.resourcemanager.admin.address.rm2</name> <value>master02:23141</value> </property> <property> <name>yarn.resourcemanager.ha.admin.address.rm2</name> <value>master02:23142</value> </property> <!—配置nodemanager--> <property> <description>Address where the localizer IPC is.</description> <name>yarn.nodemanager.localizer.address</name> <value>0.0.0.0:23344</value> </property> <!—nodemanager http访问端口--> <property> <description>NM Webapp address.</description> <name>yarn.nodemanager.webapp.address</name> <value>0.0.0.0:23999</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> <property> <name>yarn.nodemanager.local-dirs</name> <value>/usr/local/cloud/data/hadoop/yarn/local</value> </property> <property> <name>yarn.nodemanager.log-dirs</name> <value>/usr/local/cloud/data/logs/hadoop</value> </property> <property> <name>mapreduce.shuffle.port</name> <value>23080</value> </property> <!—故障处理类--> <property> <name>yarn.client.failover-proxy-provider</name> <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value> </property> 六、配置zookeeper集群 在zookeeper目录下建立data目录 和logs目录, 配置zoo.cnf dataDir=/usr/local/cloud/zookeeper/data dataLogDir=/usr/local/cloud/zookeeper/logs # the port at which the clients will connect clientPort=2181 server.1=master01:2888:3888 server.2=master02:2888:3888 server.3=slave01:2888:3888 server.4=slave02:2888:3888 server.5=slave03:2888:3888 在data目录下创建myid文件,并在对应的机器上填写数字,如上配置master01 server01 的myid写入1, master02 中的data的myid写入2,依次在其他机子上执行相同操作。 在各个机器下zookeeper目录下的bin目录下执行zkServer.sh start命令 再运行zkServer.sh status如果出现leader 或fllower 则说明集群配置正确。 到此各个配置文件配置完毕 七、启动Hadoop集群严格按照以下顺序执行(第一次) (1)各个节点启动zookeeper,在zookeeper/bin/zkServer.sh start (2) 在hadoop/bin/hdfs zkfc –formatZK 进行格式化创建命名空间 (3)在配置了journalnode的节点启动,master01,slave01,slave02 在hadoop/sbin/hadoop-daemon.sh journalnode (4)在主namenode节点执行格式化 ./bin/hadoop namenode -format zzg 主机器上启动namenode hadoop/sbin/ hadoop-daemon.sh start namenode (5)将主namenode节点格式化的目录拷贝到从主namenode节点上 hadoop/bin/hdfs namenode –bootstrapStandby hadoop/sbin/hadoop-daemon.sh start namenode (6) 在两个namenode节点都执行以下命令 ./sbin/hadoop-daemon.sh start zkfc (7) 在所有datanode节点都执行以下命令启动datanode ./sbin/hadoop-daemon.sh start datanode (8)在主namenode节点启动yarn,运行yarn-start.sh命令 jps可以看到 namenode节点 [root@master01 ~]# jps 38972 JournalNode 38758 NameNode 39166 DFSZKFailoverController 37473 QuorumPeerMain 39778 ResourceManager 42620 Jps datanode节点 [root@slave01 ~]# jps 33440 Datanode 35277 Jps 32681 QuorumPeerMain 33568 JournalNode 34231 NodeManager
感谢你能够认真阅读完这篇文章,希望小编分享的“hadoop-2.3.0-cdh5.1.0完全分布式集群配置及HA配置的示例分析”这篇文章对大家有帮助,同时也希望大家多多支持编程之家,关注编程之家行业资讯频道,更多相关知识等着你来学习!
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。