保护 Equatable 的实现

作者:Ole Begemann,原文链接,原文日期:2017-03-08
译者:Cwift;校对:walkingway;定稿:CMB

假设你有一个结构体:

struct Person {
    var name: String
}

并且让其遵守 Equatable

extension Person: Equatable {
    static func ==(lhs: Person,rhs: Person) -> Bool {
        return lhs.name == rhs.name
    }
}

实际的效果满足预期:

Person(name: "Lisa") == Person(name: "Lisa") // → true
Person(name: "Lisa") == Person(name: "Bart") // → false

Equatable 的一致性是脆弱的

不幸的是,同我在 上一篇文章 中讲到的枚举的例子一样,这种方式实现的 Equatable 的一致性是非常脆弱的:每次向结构体中添加属性时,你都必须记得去更新 == 函数的实现。如果忘记的话,Equatable 的一致性就会被打破,这个 bug 多久会被发现取决于测试的质量 —— 这里编译器无法提供任何帮助。

例如,向该结构体中增加一个字段:

struct Person {
    var name: String
    var city: String
}

由于 Equatable 的实现没有改变,两个名字相同的人就会被判定为相等 —— 根本没有考虑 city 属性

let lisaSimpson = Person(name: "Lisa",city: "Springfield")
let lisaStansfield = Person(name: "Lisa",city: "dublin")
lisaSimpson == lisaStansfield // → true!!!

更糟糕的是,与枚举的示例不同,没有简单的方法来确保 == 函数避免出现这样的错误。除了 switch 语句,编译器没有其他针对上下文的穷尽性检查。(假设对类型进行判等的一般性规则是检查类型的所有存储属性是否相等,那么可以设想一下在未来当 == 的实现中没用使用对象的所有存储属性时(如果实践证明这确实是一个重要的错误来源),编译器应该发出警告。不过现在还没有这种机制。)

使用 dump 声明相等性

目前我使用标准库中的 dump(转储)函数实现保护。dump 非常有趣,因为它使用 Swift 的反射功能,用一个字符串类型存储值或者对象中的所有存储字段。通常由 dump 展示出的值或者对象的内部情况要比其自身的 description 或者 debugDescription 更详细。dump 的输出如下所示:

dump(lisaSimpson)
// ▿ Person
//   - name: "Lisa"
//   - city: "Springfield"

下面的函数断言它的两个参数具有相同的 dump 输出

/**
 断言两个表达式具有相同的 `dump` 输出。

 - 注意:与标准库中的 `assert` 类似,该断言只在 Playground 文件以及 `-Onone` 模式的 Build 中才有效果。
 在开启优化后的 Build 中不起作用。
 - 可参考:`dump(_:to:name:indent:maxDepth:maxItems)`
 */
func assertDumpsEqual<T>(_ lhs: @autoclosure () -> T,_ rhs: @autoclosure () -> T,file: StaticString = #file,line: UInt = #line) {
    assert(String(dumping: lhs()) == String(dumping: rhs()),"Expected dumps to be equal.",file: file,line: line)
}

extension String {
    /**
     使用给定值的 `dump` 输出创建一个字符串
     */
    init<T>(dumping x: T) {
        self.init()
        dump(x,to: &self)
    }
}

更新于 2017 年 3 月 9 日: 非常感谢 Tim Vermeulen 提供的这个函数版本。它比我的原始版本简单得多,旧版本我保存在了文章末尾的附录中。

保护 == 函数

现在你必须在 == 函数调用 assertDumpsEqual:

extension Person: Equatable {
    static func ==(lhs: Person,rhs: Person) -> Bool {
        // 错误!没有包含 city 属性。
        let areEqual = lhs.name == rhs.name
        //保护:相等的值必须有相同的 dump
        if areEqual {
            assertDumpsEqual(lhs,rhs)
        }
        return areEqual
    }
}

从现在开始,如果你判断相等的两个值具有不同的 dump 输出,程序会陷入运行时陷阱:

lisaSimpson == lisaStansfield
// Crash: assertion Failed: Expected dumps to be equal.

当你忘记在 == 函数中包含 city 属性时,这个方案可以让你立即注意到这个问题。当然它不是 100% 安全的:编译期检查明显是更优秀的方案,而且你依旧必须要记得在 == 函数调用 assertDumpsEqual 函数 —— 不过在每个类型中你只需调用一次,而不用为每个属性添加一次方法调用

2017年3月9日更新:使用该模式的话,== 函数的样式始终相同:测试值是否相等,如果为 true 则执行基于 dump 的断言,最后返回测试的结果。Tim Vermeulen 建议创建一个实现了该模式的协议,并将实际的判等测试作为自定义的参数。这是一种有趣的替换,为你节省了一些样板代码,代价是隐藏了具体的实现。

缺点

这个方案的最大缺点可能是 dump 在判等时不是一个完全可靠的方案。它应该可以很好地避免漏报,但有时你可能会遇到一些误报,即实际上相等但是 dump 的输出不同的值。误报的主要对象是 NSObject 的子类,这类对象是否相等不基于对象的标识,而是基于包含内存地址的 description(这是认设置)。

我查看了一些标准库中的 Swift 类型以及 Apple 原生框架中的类,这些类型都遵守了 Equatable 协议,它们与 dump 的用法配合的很好。但是你必须注意在使用自定义的 NSObject 子类时需要重写 description。

结论

或许你可以使用 linter、静态分析工具、像 Sourcery 这样的代码生成工具或者其他的什么方法来保护 Equatable 的实现,避免回顾代码。不过,我不认为目前有任何代码分析工具能深入到本文所讨论的问题。我提出的这个并不完美的方案可能会帮你捕获一些 bug,直到你遇到更好用的工具。

附录

典型的 Swift 和 Objective-C 类型的 dump 输出示例

dump([1,2,3])
// ▿ 3 elements
//   - 1
//   - 2
//   - 3
dump(1..<10)
// ▿ CountableRange(1..<10)
//   - lowerBound: 1
//   - upperBound: 10
dump(["key": "value"])
// ▿ 1 key/value pair
//   ▿ (2 elements)
//     - .0: "key"
//     - .1: "value"
dump("Lisa" as String?)
// ▿ Optional("Lisa")
//   - some: "Lisa"
dump(Date())
// ▿ 2017-03-08 14:08:27 +0000
//   - timeIntervalSinceReferenceDate: 510674907.82620001
dump([1,3] as NSArray)
// ▿ 3 elements #0
//   - 1 #1
//     - super: NSNumber
//       - super: NSValue
//         - super: NSObject
//   - 2 #2
//     - super: NSNumber
//       - super: NSValue
//         - super: NSObject
//   - 3 #3
//     - super: NSNumber
//       - super: NSValue
//         - super: NSObject
dump("Hello" as Nsstring)
// - Hello #0
//   - super: NSMutableString
//     - super: Nsstring
//       - super: NSObject
dump(UIColor.red)
// - UIExtendedSRGBColorSpace 1 0 0 1 #0
//   - super: UIDeviceRGBColor
//     - super: UIColor
//       - super: NSObject

//  UIFont 对象的 dump 输出包含了内存地址,
// 但是 UIFont 在内部共享这些对象,所以
// 不会出问题。
let f1 = UIFont(name: "Helvetica",size: 12)!
let f2 = UIFont(name: "Helvetica",size: 12)!
f1 == f2 // → true
dump(f1)
// - <UICTFont: 0x7ff5e6102e60> font-family: "Helvetica"; font-weight: normal; font-style: normal; font-size: 12.00pt #0
//   - super: UIFont
//     - super: NSObject
dump(f2)
// - <UICTFont: 0x7ff5e6102e60> font-family: "Helvetica"; font-weight: normal; font-style: normal; font-size: 12.00pt #0
//   - super: UIFont
//     - super: NSObject

// Swift 中的类的 dump 输出不会包含内存地址:
class A {
    let value: Int
    init(value: Int) { self.value = value }
}
dump(A(value: 42))
// ▿ A #0
//   - value: 42

// NSObject 的子类会包含内存地址
//因此会出问题:
class B: NSObject {
    let value: Int
    init(value: Int) {
        self.value = value
        super.init()
    }
    static func ==(lhs: B,rhs: B) -> Bool {
        return lhs.value == rhs.value
    }
}
dump(B(value: 42))
// ▿ <__lldb_expr_26.B: 0x101012160> #0
//   - super: NSObject
//   - value: 42

// 修正: 重写 `description`:
extension B {
    override open var description: String {
        return "B: \(value)"
    }
}
dump(B(value: 42))
// ▿ B: 42 #0
//   - super: NSObject
//   - value: 42

发布版本中的零开销断言

在 Swift 中,assert 只应该用在 Debug 版本中(在 Release 版本中使用 precondition 一类的语句会造成 trap)。assertDumpsEqual 的功能实现依托于标准库中的 assert 函数。为了能正常使用该函数,在调用 assert 的前后都不应执行任何工作。assert 可以接受一个大开销的表达式:assert 使用了一个标记@autoclosure属性作为参数,以确保在调用时不会立即执行大开销的表达式。

正文所示的 assertDumpsEqual 的版本(由 Tim Vermeulen 编写)的优势是在自定义的 String 构造器中创建 dump (大开销的操作)。这是我的原始版本,在函数内创建 dump:

/**
 断言两个表达式具有相同的 `dump` 输出。

 - 注意: 该断言只在定义了 `DEBUG`
  条件编译符时才有效。否则该函数不执行任何操作。注意 在 Playground 中和 -Onone
  模式下的 Build 不会自动设置 `DEBUG` 标志位。
 */
func assertDumpsEqual<T>(_ lhs: @autoclosure () -> T,line: UInt = #line) {
    #if DEBUG
        var left = "",right = ""
        dump(lhs(),to: &left)
        dump(rhs(),to: &right)
        assert(left == right,"Expected dumps to be equal.\nlhs: \(left)\nrhs:\(right)",line: line)
    #endif
}

除非设置了 DEBUG 条件编译符,否则不能编译 #if DEBUG 块中的整个函数体。DEBUG 标志位在进行未优化的 Build 时总是认设置的,依靠它就可以满足上述目的了。不幸的是,Xcode 不会为 Playground 自动设置标志位,使用 Swift Package Manager 的 Debug Build 认情况下也不会设置该标志位(在 SwiftPM 中你可以使用 swift build -Xswiftc "-D" -Xswiftc "DEBUG" 命令手动设置该标志位)。标准库中的 assert 更加聪明。它将所有未优化的 Build 过程(包括 Playground)视作有价值的。不过,assert 识别未优化的 Build 的功能在 stdlib 之外是不可用的,这就解释了为什么应该将整个大开销的计算过程都放在 assert 中执行。

在我看到 Tim 提出的简化方案之前,我自己的实现方法是将生成和比较 dump 信息的代码放到一个局部的闭包之中,之后在传递给 assert 的时候再“调用”该闭包。因为 assert 的参数也是一个 @autoclosure 类型的,所以闭包中的代码实际只在 assert 内部执行(也就意味着只会在未优化的 Build 中执行)。我的方案看起来像这样:

func assertDumpsEqual<T>(_ lhs: @autoclosure () -> T,line: UInt = #line) {
    func areDumpsEqual() -> Bool {
        var left = "",right = ""
        // Error: Declaration closing over non-escaping
        // parameter may allow it to escape
        dump(lhs(),to: &left)
        // Error: Declaration closing over non-escaping
        // parameter may allow it to escape
        dump(rhs(),to: &right)
        return left == right
    }
    assert(areDumpsEqual(),line: line)
}

然而,上面的代码会发生编译错误。编译器不允许我们捕获闭包中的 lhs 和 rhs 参数,因为它们是 non-escaping(非逃逸)的。在我们的例子中,闭包实际上并不会从作用域中逃逸,但是编译器无法验证这一点。为了解决该问题,可以(1)使用 @escaping 标注 assertDumpsEqual 的参数,或者(2)使用 withoutActuallyEscaping 函数Swift 3.1 的新特性)来修改编译器的规则。现在该函数看起来像下面这样:

/// - 注意: 使用 `withoutActuallyEscaping` 要求 Swift 3.1。
func assertDumpsEqual<T>(_ lhs: @autoclosure () -> T,line: UInt = #line) {

    // 嵌套函数是为了解决 Bug SR-4188: `withoutActuallyEscaping`
    // 不能接受 `@autoclosure` 参数。 https://bugs.swift.org/browse/SR-4188
    func assertDumpsEqualImpl(lhs: () -> T,rhs: () -> T) {
        withoutActuallyEscaping(lhs) { escapableL in
            withoutActuallyEscaping(rhs) { escapableR in
                func areDumpsEqual() -> Bool {
                    var left = "",right = ""
                    dump(escapableL(),to: &left)
                    dump(escapableR(),to: &right)
                    return left == right
                }
                assert(areDumpsEqual(),line: line)
            }
        }
    }
    assertDumpsEqualImpl(lhs: lhs,rhs: rhs)
}

(嵌套函数解决以下 Bug 的一种方案:withoutActuallyEscaping 目前不支持 autoclosure 形式的参数。)

本文由 SwiftGG 翻译组翻译,已经获得作者翻译授权,最新文章请访问 http://swift.gg

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


软件简介:蓝湖辅助工具,减少移动端开发中控件属性的复制和粘贴.待开发的功能:1.支持自动生成约束2.开发设置页面3.做一个浏览器插件,支持不需要下载整个工程,可即时操作当前蓝湖浏览页面4.支持Flutter语言模板生成5.支持更多平台,如Sketch等6.支持用户自定义语言模板
现实生活中,我们听到的声音都是时间连续的,我们称为这种信号叫模拟信号。模拟信号需要进行数字化以后才能在计算机中使用。目前我们在计算机上进行音频播放都需要依赖于音频文件。那么音频文件如何生成的呢?音频文件的生成过程是将声音信息采样、量化和编码产生的数字信号的过程,我们人耳所能听到的声音频率范围为(20Hz~20KHz),因此音频文件格式的最大带宽是20KHZ。根据奈奎斯特的理论,音频文件的采样率一般在40~50KHZ之间。奈奎斯特采样定律,又称香农采样定律。...............
前言最近在B站上看到一个漂亮的仙女姐姐跳舞视频,循环看了亿遍又亿遍,久久不能离开!看着小仙紫姐姐的蹦迪视频,除了一键三连还能做什么?突发奇想,能不能把舞蹈视频转成代码舞呢?说干就干,今天就手把手教大家如何把跳舞视频转成代码舞,跟着仙女姐姐一起蹦起来~视频来源:【紫颜】见过仙女蹦迪吗 【千盏】一、核心功能设计总体来说,我们需要分为以下几步完成:从B站上把小姐姐的视频下载下来对视频进行截取GIF,把截取的GIF通过ASCII Animator进行ASCII字符转换把转换的字符gif根据每
【Android App】实战项目之仿抖音的短视频分享App(附源码和演示视频 超详细必看)
前言这一篇博客应该是我花时间最多的一次了,从2022年1月底至2022年4月底。我已经将这篇博客的内容写为论文,上传至arxiv:https://arxiv.org/pdf/2204.10160.pdf欢迎大家指出我论文中的问题,特别是语法与用词问题在github上,我也上传了完整的项目:https://github.com/Whiffe/Custom-ava-dataset_Custom-Spatio-Temporally-Action-Video-Dataset关于自定义ava数据集,也是后台
因为我既对接过session、cookie,也对接过JWT,今年因为工作需要也对接了gtoken的2个版本,对这方面的理解还算深入。尤其是看到官方文档评论区又小伙伴表示看不懂,所以做了这期视频内容出来:视频在这里:本期内容对应B站的开源视频因为涉及的知识点比较多,视频内容比较长。如果你觉得看视频浪费时间,可以直接阅读源码:goframe v2版本集成gtokengoframe v1版本集成gtokengoframe v2版本集成jwtgoframe v2版本session登录官方调用示例文档jwt和sess
【Android App】实战项目之仿微信的私信和群聊App(附源码和演示视频 超详细必看)
用Android Studio的VideoView组件实现简单的本地视频播放器。本文将讲解如何使用Android视频播放器VideoView组件来播放本地视频和网络视频,实现起来还是比较简单的。VideoView组件的作用与ImageView类似,只是ImageView用于显示图片,VideoView用于播放视频。...
采用MATLAB对正弦信号,语音信号进行生成、采样和内插恢复,利用MATLAB工具箱对混杂噪声的音频信号进行滤波
随着移动互联网、云端存储等技术的快速发展,包含丰富信息的音频数据呈现几何级速率增长。这些海量数据在为人工分析带来困难的同时,也为音频认知、创新学习研究提供了数据基础。在本节中,我们通过构建生成模型来生成音频序列文件,从而进一步加深对序列数据处理问题的了解。
基于yolov5+deepsort+slowfast算法的视频实时行为检测。1. yolov5实现目标检测,确定目标坐标 2. deepsort实现目标跟踪,持续标注目标坐标 3. slowfast实现动作识别,并给出置信率 4. 用框持续框住目标,并将动作类别以及置信度显示在框上
数字电子钟设计本文主要完成数字电子钟的以下功能1、计时功能(24小时)2、秒表功能(一个按键实现开始暂停,另一个按键实现清零功能)3、闹钟功能(设置闹钟以及到时响10秒)4、校时功能5、其他功能(清零、加速、星期、八位数码管显示等)前排提示:前面几篇文章介绍过的内容就不详细介绍了,可以看我专栏的前几篇文章。PS.工程文件放在最后面总体设计本次设计主要是在前一篇文章 数字电子钟基本功能的实现 的基础上改编而成的,主要结构不变,分频器将50MHz分为较低的频率备用;dig_select
1.进入官网下载OBS stdioOpen Broadcaster Software | OBS (obsproject.com)2.下载一个插件,拓展OBS的虚拟摄像头功能链接:OBS 虚拟摄像头插件.zip_免费高速下载|百度网盘-分享无限制 (baidu.com)提取码:6656--来自百度网盘超级会员V1的分享**注意**该插件必须下载但OBS的根目录(应该是自动匹配了的)3.打开OBS,选中虚拟摄像头选择启用在底部添加一段视频录制选择下面,进行录制.
Meta公司在9月29日首次推出一款人工智能系统模型:Make-A-Video,可以从给定的文字提示生成短视频。基于**文本到图像生成技术的最新进展**,该技术旨在实现文本到视频的生成,可以仅用几个单词或几行文本生成异想天开、独一无二的视频,将无限的想象力带入生活
音频信号叠加噪声及滤波一、前言二、信号分析及加噪三、滤波去噪四、总结一、前言之前一直对硬件上的内容比较关注,但是可能是因为硬件方面的东西可能真的是比较杂,而且需要渗透的东西太多了,所以学习进展比较缓慢。因为也很少有单纯的硬件学习研究,总是会伴随着各种理论需要硬件做支撑,所以还是想要慢慢接触理论学习。但是之前总找不到切入点,不知道从哪里开始,就一直拖着。最近稍微接触了一点信号处理,就用这个当作切入点,开始接触理论学习。二、信号分析及加噪信号处理选用了matlab做工具,选了一个最简单的语音信号处理方
腾讯云 TRTC 实时音视频服务体验,从认识 TRTC 到 TRTC 的开发实践,Demo 演示& IM 服务搭建。
音乐音频分类技术能够基于音乐内容为音乐添加类别标签,在音乐资源的高效组织、检索和推荐等相关方面的研究和应用具有重要意义。传统的音乐分类方法大量使用了人工设计的声学特征,特征的设计需要音乐领域的知识,不同分类任务的特征往往并不通用。深度学习的出现给更好地解决音乐分类问题提供了新的思路,本文对基于深度学习的音乐音频分类方法进行了研究。首先将音乐的音频信号转换成声谱作为统一表示,避免了手工选取特征存在的问题,然后基于一维卷积构建了一种音乐分类模型。
C++知识精讲16 | 井字棋游戏(配资源+视频)【赋源码,双人对战】
本文主要讲解如何在Java中,使用FFmpeg进行视频的帧读取,并最终合并成Gif动态图。
在本篇博文中,我们谈及了 Swift 中 some、any 关键字以及主关联类型(primary associated types)的前世今生,并由浅及深用简明的示例向大家讲解了它们之间的奥秘玄机。