In a N x N grid
representing a field of cherries,each cell is one of three possible integers.
- 0 means the cell is empty,so you can pass through;
- 1 means the cell contains a cherry,that you can pick up and pass through;
- -1 means the cell contains a thorn that blocks your way.
Your task is to collect maximum number of cherries possible by following the rules below:
- Starting at the position (0,0) and reaching (N-1,N-1) by moving right or down through valid path cells (cells with value 0 or 1);
- After reaching (N-1,N-1),returning to (0,0) by moving left or up through valid path cells;
- When passing through a path cell containing a cherry,you pick it up and the cell becomes an empty cell (0);
- If there is no valid path between (0,0) and (N-1,then no cherries can be collected.
Example 1:
Input: grid = [[0,1,-1],[1,1]] Output: 5 Explanation: The player started at (0,0) and went down,down,right right to reach (2,2). 4 cherries were picked up during this single trip,and the matrix becomes [[0,[0,0]]. Then,the player went left,up,left to return home,picking up one more cherry. The total number of cherries picked up is 5,and this is the maximum possible.
Note:
-
grid
is anN
byN
2D array,with1 <= N <= 50
. - Each
grid[i][j]
is an integer in the set{-1,1}
. - It is guaranteed that grid[0][0] and grid[N-1][N-1] are not -1.
一个N x N的网格(grid)
代表了一块樱桃地,每个格子由以下三种数字的一种来表示:
- 0 表示这个格子是空的,所以你可以穿过它。
- 1 表示这个格子里装着一个樱桃,你可以摘到樱桃然后穿过它。
- -1 表示这个格子里有荆棘,挡着你的路。
你的任务是在遵守下列规则的情况下,尽可能的摘到最多樱桃:
- 从位置 (0,0) 出发,最后到达 (N-1,N-1) ,只能向下或向右走,并且只能穿越有效的格子(即只可以穿过值为0或者1的格子);
- 当到达 (N-1,N-1) 后,你要继续走,直到返回到 (0,0) ,只能向上或向左走,并且只能穿越有效的格子;
- 当你经过一个格子且这个格子包含一个樱桃时,你将摘到樱桃并且这个格子会变成空的(值变为0);
- 如果在 (0,0) 和 (N-1,N-1) 之间不存在一条可经过的路径,则没有任何一个樱桃能被摘到。
示例 1:
输入: grid = [[0,1]] 输出: 5 解释: 玩家从(0,0)点出发,经过了向下走,向下走,向右走,向右走,到达了点(2,2)。 在这趟单程中,总共摘到了4颗樱桃,矩阵变成了[[0,0]]。 接着,这名玩家向左走,向上走,向上走,向左走,返回了起始点,又摘到了1颗樱桃。 在旅程中,总共摘到了5颗樱桃,这是可以摘到的最大值了。
说明:
-
grid
是一个N
*N
的二维数组,N的取值范围是1 <= N <= 50
。 - 每一个
grid[i][j]
都是集合{-1,1}
其中的一个数。 - 可以保证起点
grid[0][0]
和终点grid[N-1][N-1]
的值都不会是 -1。
384ms
1 class Solution { 2 func cherryPickup(_ grid: [[Int]]) -> Int { 3 let n = grid.count 4 var dp = Array(repeating: Array(repeating: Array(repeating: -1,count: n+1),count: n+1) 5 6 dp[1][1][1] = grid[0][0] 7 for x1 in 1...n { 8 for y1 in 1...n { 9 for x2 in 1...n { 10 let y2 = x1 + y1 - x2; 11 if dp[x1][y1][x2] > 0 || 12 y2 < 1 || 13 y2 > n || 14 grid[x1 - 1][y1 - 1] == -1 || 15 grid[x2 - 1][y2 - 1] == -1 { 16 continue 17 } 18 let cur = max(max(dp[x1 - 1][y1][x2],dp[x1 - 1][y1][x2 - 1]),19 max(dp[x1][y1 - 1][x2],dp[x1][y1 - 1][x2 - 1])) 20 if cur < 0 { 21 continue 22 } 23 dp[x1][y1][x2] = cur + grid[x1 - 1][y1 - 1] 24 if x1 != x2 { 25 dp[x1][y1][x2] += grid[x2 - 1][y2 - 1] 26 } 27 } 28 } 29 } 30 return dp[n][n][n] < 0 ? 0 : dp[n][n][n] 31 } 32 }
740ms
1 class Solution { 2 func cherryPickup(_ grid: [[Int]]) -> Int { 3 let length = grid.count 4 guard length != 0 && length == grid.first!.count && length >= 1 && length <= 50 && grid[0][0] != -1 && grid[length - 1][length - 1] != -1 else { 5 return 0 6 } 7 var pickUpCount = Array(repeating: Array(repeating: -1,count: length),count: length) 8 pickUpCount[0][0] = grid[0][0] 9 if length > 1 { 10 for step in 1 ... (length - 1) * 2 { 11 let xMax = min(length - 1,step),xMin = max(0,step - (length - 1)) 12 for x1 in stride(from: xMax,through: xMin,by: -1) { 13 for x2 in stride(from: xMax,by: -1) { 14 let y1 = step - x1,y2 = step - x2 15 if grid[x1][y1] == -1 || grid[x2][y2] == -1 { 16 pickUpCount[x1][x2] = -1 17 continue 18 } 19 if y1 > 0 && x2 > 0 { 20 pickUpCount[x1][x2] = max(pickUpCount[x1][x2],pickUpCount[x1][x2 - 1]) 21 } 22 if x1 > 0 && y2 > 0 { 23 pickUpCount[x1][x2] = max(pickUpCount[x1][x2],pickUpCount[x1 - 1][x2]) 24 } 25 if x1 > 0 && x2 > 0 { 26 pickUpCount[x1][x2] = max(pickUpCount[x1][x2],pickUpCount[x1 - 1][x2 - 1]) 27 } 28 if pickUpCount[x1][x2] == -1 { 29 continue 30 } 31 if x1 == x2 { 32 pickUpCount[x1][x2] += grid[x1][y1] 33 } else { 34 pickUpCount[x1][x2] += grid[x1][y1] + grid[x2][y2] 35 } 36 } 37 } 38 } 39 } 40 return max(pickUpCount[length - 1][length - 1],0) 41 } 42 }
Runtime: 876 ms
Memory Usage: 19 MB
1 class Solution { 2 func cherryPickup(_ grid: [[Int]]) -> Int { 3 var n:Int = grid.count 4 var mx:Int = 2 * n - 1 5 var dp:[[Int]] = [[Int]](repeating:[Int](repeating:-1,count:n),count:n) 6 dp[0][0] = grid[0][0] 7 for k in 1..<mx 8 { 9 for i in stride(from:n - 1,through:0,by:-1) 10 { 11 for p in stride(from:n - 1,by:-1) 12 { 13 var j:Int = k - i 14 var q:Int = k - p 15 if j < 0 || j >= n || q < 0 || q >= n || grid[i][j] < 0 || grid[p][q] < 0 16 { 17 dp[i][p] = -1 18 continue 19 } 20 if i > 0 {dp[i][p] = max(dp[i][p],dp[i - 1][p])} 21 if p > 0 {dp[i][p] = max(dp[i][p],dp[i][p - 1])} 22 if i > 0 && p > 0 {dp[i][p] = max(dp[i][p],dp[i - 1][p - 1])} 23 if dp[i][p] >= 0 {dp[i][p] += grid[i][j] + (i != p ? grid[p][q] : 0)} 24 } 25 } 26 } 27 return max(dp[n - 1][n - 1],0) 28 } 29 }
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。