我一直在尝试使用tensorflow的对象检测来尝试建立一个体面的存在检测.我正在使用tensorflow的预训练模型和代码示例在网络摄像头上执行对象检测.有什么方法可以从模型中删除对象或从人员类中过滤掉对象?
这是我目前拥有的代码.
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
from utils import label_map_util
from utils import visualization_utils as vis_util
# # Model preparation
# Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_CKPT` to point to a new .pb file.
# By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-Box with varying speeds and accuracies.
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each Box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
# ## Download Model
if not os.path.exists(MODEL_NAME + '/frozen_inference_graph.pb'):
print ('Downloading the model')
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
print ('Download complete')
else:
print ('Model already exists')
# ## Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# ## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we kNow that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
#intializing the web camera device
import cv2
cap = cv2.VideoCapture(0)
# Running the tensorflow session
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
ret = True
while (ret):
ret,image_np = cap.read()
image_np = cv2.resize(image_np,(600,400))
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each Box represents a part of the image where a particular object was detected.
Boxes = detection_graph.get_tensor_by_name('detection_Boxes:0')
# Each score represent how level of confidence for each of the objects.
# score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
b = [x for x in classes if x == 1]
# Actual detection.
(Boxes, scores, classes, num_detections) = sess.run(
[Boxes, scores, classes, num_detections],
Feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_Boxes_and_labels_on_image_array(
image_np,
np.squeeze(Boxes),
np.squeeze(b).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
#print (len(Boxes.shape))
#print (classes)
final_score = np.squeeze(scores)
count = 0
for i in range(100):
if scores is None or final_score[i] > 0.5:
count = count + 1
print (count, ' object(s) detected...')
# plt.figure(figsize=IMAGE_SIZE)
# plt.imshow(image_np)
cv2.imshow('image',image_np)
if cv2.waitKey(200) & 0xFF == ord('q'):
cv2.destroyAllWindows()
cap.release()
break
解决方法:
我看到您在b = [x表示x,如果x == 1,则表示类中的x]行中使用了一个过滤器,以仅获取所有人员检测. (在标签图中,人员的ID恰好是1).但这是行不通的,因为您需要相应地更改框,分数和班级.尝试这个 :
首先删除线
b = [x for x in classes if x == 1]
Boxes = np.squeeze(Boxes)
scores = np.squeeze(scores)
classes = np.squeeze(classes)
indices = np.argwhere(classes == 1)
Boxes = np.squeeze(Boxes[indices])
scores = np.squeeze(scores[indices])
classes = np.squeeze(classes[indices])
vis_util.visualize_Boxes_and_labels_on_image_array(
image_np,
Boxes,
classes,
scores,
category_index,
use_normalized_coordinates=True,
line_thickness=8)
这个想法是模型可以产生多个类别的检测结果,但只有类别人员被选中才能在图像上可视化.
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。