微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

【tensorflow2.0】张量的数学运算

张量的操作主要包括张量的结构操作和张量的数学运算。

张量结构操作诸如:张量创建,索引切片,维度变换,合并分割。

张量数学运算主要有:标量运算,向量运算,矩阵运算。另外我们会介绍张量运算的广播机制。

本篇我们介绍张量的数学运算。

一,标量运算

张量的数学运算符可以分为标量运算符、向量运算符、以及矩阵运算符。

加减乘除乘方,以及三角函数,指数,对数等常见函数,逻辑比较运算符等都是标量运算符。

标量运算符的特点是对张量实施逐元素运算。

有些标量运算符对常用的数学运算符进行了重载。并且支持类似numpy的广播特性。

许多标量运算符都在 tf.math模块下。

import tensorflow as tf 
import numpy  np 
a = tf.constant([[1.0,2],[-3,1)">4.0]])
b = tf.constant([[5.0,1)">6],[7.0,1)">8.0]])
a+b  #运算符重载
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[ 6.,  8.],
       [ 4., 12.]], dtype=float32)>
a-b 
<tf.Tensor: shape=(2, numpy=
array([[ -4.,  -4.],
       [-10.,  -4.]], dtype=float32)>
a*b 
<tf.Tensor: shape=(2, numpy=
array([[  5.,  12.],
       [-21.,  32.]], dtype=float32)>
a/b
<tf.Tensor: shape=(2, numpy=
array([[ 0.2       ,  0.33333334],
       [-0.42857143,  0.5       ]], dtype=float32)>
a**2
<tf.Tensor: shape=(2, numpy=
array([[ 1.,  4.],
       [ 9., 16.]], dtype=float32)>
a**(0.5)
<tf.Tensor: shape=(2, numpy=
array([[1.       , 1.4142135],
       [      nan, 2.       ]], dtype=float32)>
a%3 #mod的运算符重载,等价于m = tf.math.mod(a,3)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 2, 0], dtype=int32)>
a//3  地板除法
<tf.Tensor: shape=(2, numpy=
array([[ 0.,  0.],
       [-1.,  1.]], dtype=float32)>
(a>=2)
<tf.Tensor: shape=(2, dtype=bool, numpy=
array([[False,  True],
       [False,  True]])>
(a>=2)&(a<=3)
<tf.Tensor: shape=(2, False]])>
(a>=2)|(a<=3)
<tf.Tensor: shape=(2, numpy=
array([[ True,
       [ True,  True]])>
a==5 tf.equal(a,5)
<tf.Tensor: shape=(3, numpy=array([False, False, False])>
tf.sqrt(a)
<tf.Tensor: shape=(2, dtype=float32)>
a = tf.constant([1.0,8.0])
b = tf.constant([5.0,6.0])
c = tf.constant([6.0,7.0])
tf.add_n([a,b,c])
<tf.Tensor: shape=(2, numpy=array([12., 21.], dtype=float32)>
tf.print(tf.maximum(a,b))
[5 8]
tf.print(tf.minimum(a,b))
[1 6]

二,向量运算

向量运算符只在一个特定轴上运算,将一个向量映射到一个标量或者另外一个向量。 许多向量运算符都以reduce开头。

 向量reduce
a = tf.range(1,10)
tf.print(tf.reduce_sum(a))
tf.(tf.reduce_mean(a))
tf.(tf.reduce_max(a))
tf.(tf.reduce_min(a))
tf.print(tf.reduce_prod(a))
45
5
9
1
362880
 张量指定维度进行reduce
b = tf.reshape(a,(3,3))
tf.print(tf.reduce_sum(b,axis=1,keepdims=True))
tf.ims=True))
[[6]
 [15]
 [24]]
[[12 15 18]]
 bool类型的reduce
p = tf.constant([True,False,False])
q = tf.constant([False,True])
tf.(tf.reduce_all(p))
tf.print(tf.reduce_any(q))
0
1
 利用tf.foldr实现tf.reduce_sum
s = tf.foldr(lambda a,b:a+b,tf.range(10)) 
tf.print(s)
45
 cum扫描累积
a = tf.range(1,1)">(tf.math.cumsum(a))
tf.print(tf.math.cumprod(a))
[1 3 6 ... 28 36 45]
[1 2 6 ... 5040 40320 362880]
 arg最大最小值索引
a = tf.range(1,1)">(tf.argmax(a))
tf.print(tf.argmin(a))
8
0
 tf.math.top_k可以用于对张量排序
a = tf.constant([1,3,7,5,4,8])
 
values,indices = tf.math.top_k(a,sorted=True)
tf.(values)
tf.(indices)
 
 利用tf.math.top_k可以在TensorFlow中实现KNN算法
[8 7 5]
[5 2 3]

三,矩阵运算

矩阵必须是二维的。类似tf.constant([1,2,3])这样的不是矩阵。

矩阵运算包括:矩阵乘法,矩阵转置,矩阵逆,矩阵求迹,矩阵范数,矩阵行列式,矩阵求特征值,矩阵分解等运算。

除了一些常用的运算外,大部分和矩阵有关的运算都在tf.linalg子包中。

 矩阵乘法
a = tf.constant([[1,2],[3,4]])
b = tf.constant([[2,0],[0,2]])
a@b  等价于tf.matmul(a,b)
<tf.Tensor: shape=(2, numpy=
array([[2, 4],
       [6, 8]], dtype=int32)>
 矩阵转置
a = tf.constant([[1.0,1)">]])
tf.transpose(a)
<tf.Tensor: shape=(2, numpy=
array([[1., 3.],
       [2., 4.]], dtype=float32)>
 矩阵逆,必须为tf.float32或tf.double类型
a = tf.constant([[1.0,[3.0,4]],dtype = tf.float32)
tf.linalg.inv(a)
<tf.Tensor: shape=(2, numpy=
array([[-2.0000002 ,  1.0000001 ],
       [ 1.5000001 , -0.50000006]], dtype=float32)>
 矩阵求trace
a = tf.constant([[1.0,1)">]])
tf.linalg.trace(a)
<tf.Tensor: shape=(), numpy=5.0>
 矩阵求范数
a = tf.constant([[1.0,1)">]])
tf.linalg.norm(a)
<tf.Tensor: shape=(), numpy=5.477226>
 矩阵行列式
a = tf.constant([[1.0,1)">]])
tf.linalg.det(a)
<tf.Tensor: shape=(), numpy=-2.0>
 矩阵特征值
tf.linalg.eigvalsh(a)
<tf.Tensor: shape=(2, numpy=array([-0.8541021,  5.854102 ], dtype=float32)>
 矩阵qr分解
a  = tf.constant([[1.0,2.0],4.0]],1)"> tf.float32)
q,r = tf.linalg.qr(a)
tf.(q)
tf.(r)
tf.print(q@r)
[[-0.316227794 -0.948683321]
 [-0.948683321 0.316227734]]
[[-3.1622777 -4.4271884]
 [0 -0.632455349]]
[[1.00000012 1.99999976]
 [3 4]]
 矩阵svd分解
a  = tf.constant([[1.0,1)"> tf.float32)
v,s,d = tf.linalg.svd(a)
tf.matmul(tf.matmul(s,tf.linalg.diag(v)),d)
 
 利用svd分解可以在TensorFlow中实现主成分分析降维
<tf.Tensor: shape=(2, numpy=
array([[0.9999996, 1.9999996],
       [2.9999998, 4.       ]], dtype=float32)>

四,广播机制

TensorFlow的广播规则和numpy是一样的:

  • 1、如果张量的维度不同,将维度较小的张量进行扩展,直到两个张量的维度都一样。
  • 2、如果两个张量在某个维度上的长度是相同的,或者其中一个张量在该维度上的长度为1,那么我们就说这两个张量在该维度上是相容的。
  • 3、如果两个张量在所有维度上都是相容的,它们就能使用广播。
  • 4、广播之后,每个维度的长度将取两个张量在该维度长度的较大值。
  • 5、在任何一个维度上,如果一个张量的长度为1,另一个张量长度大于1,那么在该维度上,就好像是对第一个张量进行了复制。

tf.broadcast_to 以显式的方式按照广播机制扩展张量的维度。

 利用svd分解可以在TensorFlow中实现主成分分析降维
<tf.Tensor: shape=(3, 3), numpy=
array([[1, 3],
       [2, 3,
       [3, 4, 5]], dtype=int32)>
tf.broadcast_to(a,b.shape)
<tf.Tensor: shape=(3,
       [1, 3]], dtype=int32)>
 计算广播后计算结果的形状,静态形状,TensorShape类型参数
tf.broadcast_static_shape(a.shape,b.shape)
TensorShape([3, 3])
 计算广播后计算结果的形状,动态形状,Tensor类型参数
c = tf.constant([1,1)">])
d = tf.constant([[1],[2],[3]])
tf.broadcast_dynamic_shape(tf.shape(c),tf.shape(d))
<tf.Tensor: shape=(2, numpy=array([3, dtype=int32)>
 广播效果
c+d 等价于 tf.broadcast_to(c,3]) + tf.broadcast_to(d,3])
<tf.Tensor: shape=(2, numpy=
array([[6.5760484, 7.8174157],
       [6.8174157, 6.4239516]], dtype=float32)>

 

参考:

开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐