目录
1.数据集
[[1, 2, 5], [2, 4], [2, 3], [1,2,4],[1,3],[2,3],[1,3],[1,2,3,5],[1,2,3]]
可自行定义为所需的数据集。
执行程序后,找到具有关联的商品,并且输出其对应的结果:
2.Apriori算法原理
Apriori算法是经典的挖掘频繁项集和关联规则的数据挖掘算法。Apriori算法使用一种称为逐层搜索的迭代方法,其中k项集用于探索(k+1)项集。为了提高频繁项集逐层产生的效率,Apriori算法使用频繁项集的先验性质来压缩搜索空间。先验性质为:
频繁项集的所有非空子集也一定是频繁的。非频繁项集的所有超集一定也是非频繁项集。
3.实现步骤
3.1A算法函数,其最小置信度为0.2
def A(dataset, min_support = 2): c1 = item (dataset) f1, sup_1 = get_f_i(dataset, c1, min_support) F = [f1] sup_data = sup_1 K = 2 while (len(F[K - 2]) > 1): ck = get_c(F[K - 2], K) fk, sup_k = get_f_i(dataset, ck, min_support) F.append(fk) sup_data.update(sup_k) K += 1 return F, sup_data
3.2获取频繁项集函数
def get_f_i(dataset, c, min_support): #获取频繁项集 cut_branch = {} for x in c: for y in dataset: if set(x).issubset(set(y)): cut_branch[tuple(x)] = cut_branch.get(tuple(x), 0) + 1 Fk = [] sup_dataK = {} for i in cut_branch: if cut_branch[i] >= min_support: Fk.append( list(i)) sup_dataK[i] = cut_branch[i] return Fk, sup_dataK
3.3候选集函数
def get_c(Fk, K): ck = [] for i in range(len(Fk)): for j in range(i+1, len(Fk)): L1 = list(Fk[i])[:K-2] L2 = list(Fk[j])[:K-2] L1.sort() L2.sort() if L1 == L2: if K > 2: new = list(set(Fk[i]) ^ set(Fk[j])) else: new = set() for x in Fk: if set(new).issubset(set(x)) and list(set(Fk[i]) | set(Fk[j])) not in ck: ck.append(list(set(Fk[i]) | set(Fk[j]))) return ck
3.4扫描候选集函数
def item(dataset): c1 = [] for x in dataset: for y in x: if [y] not in c1: c1.append( [y] ) c1.sort() return c1
3.5主函数
if __name__ == '__main__': data = [[1, 2, 5], [2, 4], [2, 3], [1,2,4],[1,3],[2,3],[1,3],[1,2,3,5],[1,2,3]] K,Z= A(data,min_support = 2) #最小支持度设置为2 print("具有关联的商品是:") for i in range(len(K)):人工智能 print(K[i])
4.运行结果,如下图所示:
5.全部代码
def A(dataset, min_support = 2): c1 = item (dataset) f1, sup_1 = get_f_i(dataset, c1, min_support) F = [f1] sup_data = sup_1 K = 2 while (len(F[K - 2]) > 1): ck = get_c(F[K - 2], K) fk, sup_k = get_f_i(dataset, ck, min_support) F.append(fk) sup_data.update(sup_k) K += 1 return F, sup_data def get_f_i(dataset, c, min_support): #获取频繁项集 cut_branch = {} for x in c: for y in dataset: if set(x).issubset(set(y)): cut_branch[tuple(x)] = cut_branch.get(tuple(x), 0) + 1 Fk = [] sup_dataK = {} for i in cut_branch: if cut_branch[i] >= min_support: Fk.append( list(i)) sup_dataK[i] = cut_branch[i] return Fk, sup_dataK def get_c(Fk, K): ck = [] for i in range(len(Fk)): for j in range(i+1, len(Fk)): L1 = list(Fk[i])[:K-2] L2 = list(Fk[j])[:K-2] L1.sort() L2.sort() if L1 == L2: if K > 2: new = list(set(Fk[i]) ^ set(Fk[j])) else: new = set() for x in Fk: if set(new).issubset(set(x)) and list(set(Fk[i]) | set(Fk[j])) not in ck: ck.append(list(set(Fk[i]) | set(Fk[j]))) return ck def item(dataset): c1 = [] for x in dataset: for y in x: if [y] not in c1: c1.append( [y] ) c1.sort() return c1 if __name__ == '__main__': data = [[1, 2, 5], [2, 4], [2, 3], [1,2,4],[1,3],[2,3],[1,3],[1,2,3,5],[1,2,3]] K,Z= A(data,min_support = 2) #最小支持度设置为2 print("具有关联的商品是:") for i in range(len(K)): print(K[i])
版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。