TF2 IteratorGetNext 中的 XLA:不支持的操作错误

如何解决TF2 IteratorGetNext 中的 XLA:不支持的操作错误

我正在尝试使用 XLA 简单地运行 .pb tensorflow 2 模型。 但是,我收到以下错误:

tensorflow.python.framework.errors_impl.InvalidArgumentError: Function invoked by the following node is not compilable: {{node __inference_predict_function_3130}} = __inference_predict_function_3130[_XlaMustCompile=true,config_proto="\n\007\n\003CPU\020\001\n\007\n\003GPU\020\0002\002J\0008\001\202\001\000",executor_type=""](dummy_input,dummy_input,...).
Uncompilable nodes:
IteratorGetNext: unsupported op: No registered 'IteratorGetNext' OpKernel for XLA_CPU_JIT devices compatible with node {{node IteratorGetNext}}
    Stacktrace:
        Node: __inference_predict_function_3130,function: 
        Node: IteratorGetNext,function: __inference_predict_function_3130
 [Op:__inference_predict_function_3130]

该错误的发生与模型无关,并且在我训练模型后直接应用模型时也会发生。我想,我在做一些根本错误的事情,或者 TF2 没有正确支持 XLA。没有运行 TF XLA 的相同代码。 有没有人知道如何解决这个问题?

我在 Ubuntu 18.04 和 anaconda 中的 python 3.8 和 TF 2.4.1 中工作 我的代码:

import tensorflow as tf
import numpy as np
import h5py
import sys

model_path_compile= 'model_Input/pbFolder'
data_inference_mat ='model_Input/data_inference/XXXX.MAT'

with h5py.File(data_inference_mat,'r') as dataset:
    try:
        image_set = dataset['polar'][()].astype(np.uint16).T
        image = np.cast[np.float32](image_set)
        image /= 16384
    except KeyError:
        print('-----------------------ERROR--------------')
x = np.expand_dims(image,axis=0)
model_compile = tf.keras.models.load_model(model_path_compile)
with tf.device("device:XLA_CPU:0"):
    y_pred = model_compile.predict(x)`

完整错误:

    2021-07-19 16:09:02.521211: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices,tf_xla_enable_xla_devices not set
2021-07-19 16:09:02.521416: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in other operations,rebuild TensorFlow with the appropriate compiler flags.
2021-07-19 16:09:02.522638: I tensorflow/core/common_runtime/process_util.cc:146] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.
2021-07-19 16:09:03.357078: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)
2021-07-19 16:09:03.378059: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2400000000 Hz
Traceback (most recent call last):
  File "/media/ric/DATA/Software_Workspaces/MasterThesisWS/AI_HW_deploy/XLA/Tf2ToXLA_v2/TF2_RunModel.py",line 24,in <module>
    y_pred = model_compile.predict(x)
  File "/home/ric/anaconda3/envs/TfToXLA/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py",line 1629,in predict
    tmp_batch_outputs = self.predict_function(iterator)
  File "/home/ric/anaconda3/envs/TfToXLA/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py",line 828,in __call__
    result = self._call(*args,**kwds)
  File "/home/ric/anaconda3/envs/TfToXLA/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py",line 894,in _call
    return self._concrete_stateful_fn._call_flat(
  File "/home/ric/anaconda3/envs/TfToXLA/lib/python3.8/site-packages/tensorflow/python/eager/function.py",line 1918,in _call_flat
    return self._build_call_outputs(self._inference_function.call(
  File "/home/ric/anaconda3/envs/TfToXLA/lib/python3.8/site-packages/tensorflow/python/eager/function.py",line 555,in call
    outputs = execute.execute(
  File "/home/ric/anaconda3/envs/TfToXLA/lib/python3.8/site-packages/tensorflow/python/eager/execute.py",line 59,in quick_execute
    tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle,device_name,op_name,tensorflow.python.framework.errors_impl.InvalidArgumentError: Function invoked by the following node is not compilable: {{node __inference_predict_function_3130}} = __inference_predict_function_3130[_XlaMustCompile=true,function: __inference_predict_function_3130
 [Op:__inference_predict_function_3130]

解决方法

经过几天的工作和各种方法,我终于找到了适合我的目的的解决方法。

由于我只需要模型一次执行的 LLVM IR,我可以使用 TensorFlow 的替代函数 model.predict_step。它只运行一次,因此不使用 IteratorGetNext 方法来避免初始错误。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


使用本地python环境可以成功执行 import pandas as pd import matplotlib.pyplot as plt # 设置字体 plt.rcParams[&#39;font.sans-serif&#39;] = [&#39;SimHei&#39;] # 能正确显示负号 p
错误1:Request method ‘DELETE‘ not supported 错误还原:controller层有一个接口,访问该接口时报错:Request method ‘DELETE‘ not supported 错误原因:没有接收到前端传入的参数,修改为如下 参考 错误2:cannot r
错误1:启动docker镜像时报错:Error response from daemon: driver failed programming external connectivity on endpoint quirky_allen 解决方法:重启docker -&gt; systemctl r
错误1:private field ‘xxx‘ is never assigned 按Altʾnter快捷键,选择第2项 参考:https://blog.csdn.net/shi_hong_fei_hei/article/details/88814070 错误2:启动时报错,不能找到主启动类 #
报错如下,通过源不能下载,最后警告pip需升级版本 Requirement already satisfied: pip in c:\users\ychen\appdata\local\programs\python\python310\lib\site-packages (22.0.4) Coll
错误1:maven打包报错 错误还原:使用maven打包项目时报错如下 [ERROR] Failed to execute goal org.apache.maven.plugins:maven-resources-plugin:3.2.0:resources (default-resources)
错误1:服务调用时报错 服务消费者模块assess通过openFeign调用服务提供者模块hires 如下为服务提供者模块hires的控制层接口 @RestController @RequestMapping(&quot;/hires&quot;) public class FeignControl
错误1:运行项目后报如下错误 解决方案 报错2:Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.8.1:compile (default-compile) on project sb 解决方案:在pom.
参考 错误原因 过滤器或拦截器在生效时,redisTemplate还没有注入 解决方案:在注入容器时就生效 @Component //项目运行时就注入Spring容器 public class RedisBean { @Resource private RedisTemplate&lt;String
使用vite构建项目报错 C:\Users\ychen\work&gt;npm init @vitejs/app @vitejs/create-app is deprecated, use npm init vite instead C:\Users\ychen\AppData\Local\npm-
参考1 参考2 解决方案 # 点击安装源 协议选择 http:// 路径填写 mirrors.aliyun.com/centos/8.3.2011/BaseOS/x86_64/os URL类型 软件库URL 其他路径 # 版本 7 mirrors.aliyun.com/centos/7/os/x86
报错1 [root@slave1 data_mocker]# kafka-console-consumer.sh --bootstrap-server slave1:9092 --topic topic_db [2023-12-19 18:31:12,770] WARN [Consumer clie
错误1 # 重写数据 hive (edu)&gt; insert overwrite table dwd_trade_cart_add_inc &gt; select data.id, &gt; data.user_id, &gt; data.course_id, &gt; date_format(
错误1 hive (edu)&gt; insert into huanhuan values(1,&#39;haoge&#39;); Query ID = root_20240110071417_fe1517ad-3607-41f4-bdcf-d00b98ac443e Total jobs = 1
报错1:执行到如下就不执行了,没有显示Successfully registered new MBean. [root@slave1 bin]# /usr/local/software/flume-1.9.0/bin/flume-ng agent -n a1 -c /usr/local/softwa
虚拟及没有启动任何服务器查看jps会显示jps,如果没有显示任何东西 [root@slave2 ~]# jps 9647 Jps 解决方案 # 进入/tmp查看 [root@slave1 dfs]# cd /tmp [root@slave1 tmp]# ll 总用量 48 drwxr-xr-x. 2
报错1 hive&gt; show databases; OK Failed with exception java.io.IOException:java.lang.RuntimeException: Error in configuring object Time taken: 0.474 se
报错1 [root@localhost ~]# vim -bash: vim: 未找到命令 安装vim yum -y install vim* # 查看是否安装成功 [root@hadoop01 hadoop]# rpm -qa |grep vim vim-X11-7.4.629-8.el7_9.x
修改hadoop配置 vi /usr/local/software/hadoop-2.9.2/etc/hadoop/yarn-site.xml # 添加如下 &lt;configuration&gt; &lt;property&gt; &lt;name&gt;yarn.nodemanager.res