CBCT GPU重构

如何解决CBCT GPU重构

下面的 openCL 代码工作得很好,速度也很快,但我的印象是我在 openCL 障碍和索引混合方面遗漏了一些东西;我知道这不是很容易理解,它是我正在研究的 CBCT 重建的核心;结局图(ReturnMatrice 看起来有点困惑)。

 __kernel void
                   ReconstructionGPU(
                                       __global          float* Matrice,__global          float* ReturnMatrice,__global          short* ReturnCheckImage,__constant        float* _dLocArraiAngoliSen,__constant        float* _dLocArraiAngoliCos,__constant        float* Cos_Tilt_in_Rad,__constant        float* Sin_Tilt_in_Rad,__constant        float* iTilt,__constant        float* _iOffsetU,__constant        float* _iOffsetV,__constant        int* iSizeX,__constant        int* iSizeY,__constant        int* iSizeZ,__constant        int* iSizeImgX,__constant        int* iSizeImgY,__constant        float* _fDSO,__constant        float* _fDSD,__constant        float* m_fSizeVoxelX,__constant        float* m_fSizeVoxelY,__constant        float* m_fPixelSensoreDim,__constant        int* Loop,__constant        int* Axial,__constant        int* Padding
                                   )
        {

        private int _iLocSizeX = iSizeX[0];                     // Detector X
        private int _iLocSizeY = iSizeY[0];                     // Detector Y
        private int _iLocSizeImage = _iLocSizeX * _iLocSizeY;   // Dimensione Immagine

        private int _iSizeMezziX;                               // EmiMatrix X
        _iSizeMezziX = (iSizeX[0] / 2 );
        
        private int _iSizeMezziY;
        _iSizeMezziY = (iSizeY[0] / 2 );                        // EmiMatrix Y
                            
        private int _iSizeMezziDetX;                            // Emidetector X
        _iSizeMezziDetX = (iSizeImgX[0] / 2 );
        private int _iSizeMezziDetY;
        _iSizeMezziDetY = (iSizeImgY[0] / 2 );                  // Emidetector Y
                            
        private float _iSizeMezziYQuadro = ((_iSizeMezziX - Padding[0]) * (_iSizeMezziY - Padding[0]));   //Border

        private float kySen = 0;
        private float kyCos = 0;

        private float CoordY_Piu_OffsetU = 0;

        private float CoordZ_Piu_OffsetV = 0;
        private float fDist_Y_inMmObj = 0;

        private float fDist_Z_inMmObj = 0;
        private float fDSDinMmY = 0;

        private float fDSDinMmZ = 0;

        private float fDSDinMmYPiu_AngoloTilt = 0;

        private float fDSDinMmZPiu_AngoloTilt = 0;

        private float _ValImage = 0;


        private int ValY = 0;

        private int ValZ = 0;

        private int _iTempx = 0;
        private int _iTempy = 0;

        private int _Index = 0;

        private int z = 0;

        private int zMenoAxial0 = 0;

        private float zPerIlockSizeImage = 0;

        private float TempYPerIlockSizeX = 0;

        private float zPiuTyLoc = 0;

        private float zMenoAxTyLoc = 0;

        private int m_y;
        private int m_x;
        private int y;
        private int x;

        private int m_z = get_global_id(2);

        z = m_z + Axial[0];                             

                                m_y = get_global_id(1);
                                m_x = get_global_id(0);

                                y = (m_y - _iSizeMezziY ) ;
                                x = (m_x - _iSizeMezziX) ;

                                CoordZ_Piu_OffsetV  = -_iSizeMezziX + z  +     _iOffsetV[0];
                                fDist_Z_inMmObj     = CoordZ_Piu_OffsetV * m_fSizeVoxelX[0];             

                                zMenoAxial0        = (z - Axial[0] )   * _iLocSizeImage ;
                                zPerIlockSizeImage = z                 * _iLocSizeImage;

                                    kySen = (_dLocArraiAngoliSen[Loop[0]] * (y)) ;
                                    kyCos = (_dLocArraiAngoliCos[Loop[0]] * (y)) ;                                                                       
                        
                                    CoordY_Piu_OffsetU      = y  - _iOffsetU[0];
                                    
                                    fDist_Y_inMmObj     = (CoordY_Piu_OffsetU * m_fSizeVoxelY[0]);           // Distanza Y in millimetri del voxel in esame nel volume ricostruito
                                                                                                           
                                    fDSDinMmY                   = 0;

                                    fDSDinMmYPiu_AngoloTilt     = 0;
                                    
                                    ValY                        = 0;                                
                                    
                                    fDSDinMmZ                   = 0;                                        
                                    
                                    fDSDinMmZPiu_AngoloTilt     = 0;
                                    
                                    ValZ                        = 0;                                                                      

                                        _iTempx    =  ((_iSizeMezziX + (_dLocArraiAngoliCos[Loop[0]] * x)   - kySen));       // Calcolo coordinate X
                                        _iTempy    =  ((_iSizeMezziY + (_dLocArraiAngoliSen[Loop[0]] * x)   + kyCos));       // Calcolo coordinate Y
                                    
                                        // Calcoli salti per assegnazione matrice ricostruita

                                        TempYPerIlockSizeX =   _iTempy * iSizeX[0];

                                        zPiuTyLoc     = zPerIlockSizeImage + TempYPerIlockSizeX;                                        
                                      
                                        zMenoAxTyLoc  = zMenoAxial0 + TempYPerIlockSizeX;                                                                               
                                        
                                        if (_iTempy >= iSizeY - Padding[0] || _iTempx >= iSizeX - Padding[0] || _iTempy< 0 || _iTempx< 0  || 
                                          (((_iTempx - _iSizeMezziX) * (_iTempx - _iSizeMezziX)) + ((_iTempy - _iSizeMezziY) * (_iTempy - _iSizeMezziY))) > _iSizeMezziYQuadro)
                                           
                                        { }
                                        else
                                        {

                                            //float fKval = (_fDSO[0] - (x * m_fSizeVoxelX[0]));
                                            float fKval = (_fDSO[0] - (x * m_fPixelSensoreDim[0]));

                                            fDSDinMmY    = ((fDist_Y_inMmObj* _fDSD[0]) / fKval);         // Distanza Y del pixel in esame rapportata a DSD in millimetri                                                                               
                                            fDSDinMmZ    = ((fDist_Z_inMmObj* _fDSD[0]) / fKval);         // Distanza DSD in millimetri
                                            
                                            if (iTilt != 0)
                                            {

                                                fDSDinMmYPiu_AngoloTilt = (fDSDinMmY * Cos_Tilt_in_Rad[0] +0.5f);                               // Calcolo della Coordinata che tiene conto anche dell'angolo di inclinazione del sensore
                                                
                                                ValY = (((fDSDinMmYPiu_AngoloTilt / m_fPixelSensoreDim[0] ) + _iSizeMezziDetX)+0.5f);   // Distanza in pixel del pixel in esame sul detector       
                                                                                        
                                                fDSDinMmZPiu_AngoloTilt = (fDSDinMmZ  + (fDSDinMmZ * Sin_Tilt_in_Rad[0])+0.5f);                 // Calcolo della Coordinata che tiene conto anche dell'angolo di inclinazione del sensore

                                                ValZ = (((fDSDinMmZPiu_AngoloTilt / m_fPixelSensoreDim[0]) + _iSizeMezziDetY)+0.5f);    // Distanza in pixel del pixel in esame sul detector
                                                                                
                                            }   

                                            else
                                            {
                                                
                                                ValY = ((fDSDinMmY / m_fPixelSensoreDim[0]) + _iSizeMezziDetX+0.5f);                 // Distanza in pixel del pixel in esame sul detector

                                                ValZ = ((fDSDinMmZ / m_fPixelSensoreDim[0]) + _iSizeMezziDetY+0.5f);                 // Distanza in pixel del pixel in esame sul detector                                       

                                            }
                                                                                   
                                            if (ValY >= 0 && ValY < iSizeImgX[0] && ValZ >= 0 && ValZ < iSizeImgY[0])
                                                {
                                                
                                                _Index  = ((ValZ * iSizeImgX[0]) + ValY);
                                                
                                                                                                 
                                                _ValImage = (float)Matrice[_Index];//  Pixel dell'immagine con coordinate calcolate da ValX e ValY                                                
                                                                                                     
                                                }
                                            else 
                                                { 

                                                 _ValImage = 0;     // Pixel dell'immagine con coordinate calcolate da ValX e ValY                                                
                                   
                                                }
                                                                                                                                                                
                                                   barrier(CLK_LOCAL_MEM_FENCE);

                                                            ReturnMatrice[(int)zMenoAxTyLoc + _iTempx] += _ValImage;   //ValImgPesato                                                    


                                                            _ValImage = 0;                                                          
                                              
                                                }                                               
              
                }



版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


使用本地python环境可以成功执行 import pandas as pd import matplotlib.pyplot as plt # 设置字体 plt.rcParams[&#39;font.sans-serif&#39;] = [&#39;SimHei&#39;] # 能正确显示负号 p
错误1:Request method ‘DELETE‘ not supported 错误还原:controller层有一个接口,访问该接口时报错:Request method ‘DELETE‘ not supported 错误原因:没有接收到前端传入的参数,修改为如下 参考 错误2:cannot r
错误1:启动docker镜像时报错:Error response from daemon: driver failed programming external connectivity on endpoint quirky_allen 解决方法:重启docker -&gt; systemctl r
错误1:private field ‘xxx‘ is never assigned 按Altʾnter快捷键,选择第2项 参考:https://blog.csdn.net/shi_hong_fei_hei/article/details/88814070 错误2:启动时报错,不能找到主启动类 #
报错如下,通过源不能下载,最后警告pip需升级版本 Requirement already satisfied: pip in c:\users\ychen\appdata\local\programs\python\python310\lib\site-packages (22.0.4) Coll
错误1:maven打包报错 错误还原:使用maven打包项目时报错如下 [ERROR] Failed to execute goal org.apache.maven.plugins:maven-resources-plugin:3.2.0:resources (default-resources)
错误1:服务调用时报错 服务消费者模块assess通过openFeign调用服务提供者模块hires 如下为服务提供者模块hires的控制层接口 @RestController @RequestMapping(&quot;/hires&quot;) public class FeignControl
错误1:运行项目后报如下错误 解决方案 报错2:Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.8.1:compile (default-compile) on project sb 解决方案:在pom.
参考 错误原因 过滤器或拦截器在生效时,redisTemplate还没有注入 解决方案:在注入容器时就生效 @Component //项目运行时就注入Spring容器 public class RedisBean { @Resource private RedisTemplate&lt;String
使用vite构建项目报错 C:\Users\ychen\work&gt;npm init @vitejs/app @vitejs/create-app is deprecated, use npm init vite instead C:\Users\ychen\AppData\Local\npm-
参考1 参考2 解决方案 # 点击安装源 协议选择 http:// 路径填写 mirrors.aliyun.com/centos/8.3.2011/BaseOS/x86_64/os URL类型 软件库URL 其他路径 # 版本 7 mirrors.aliyun.com/centos/7/os/x86
报错1 [root@slave1 data_mocker]# kafka-console-consumer.sh --bootstrap-server slave1:9092 --topic topic_db [2023-12-19 18:31:12,770] WARN [Consumer clie
错误1 # 重写数据 hive (edu)&gt; insert overwrite table dwd_trade_cart_add_inc &gt; select data.id, &gt; data.user_id, &gt; data.course_id, &gt; date_format(
错误1 hive (edu)&gt; insert into huanhuan values(1,&#39;haoge&#39;); Query ID = root_20240110071417_fe1517ad-3607-41f4-bdcf-d00b98ac443e Total jobs = 1
报错1:执行到如下就不执行了,没有显示Successfully registered new MBean. [root@slave1 bin]# /usr/local/software/flume-1.9.0/bin/flume-ng agent -n a1 -c /usr/local/softwa
虚拟及没有启动任何服务器查看jps会显示jps,如果没有显示任何东西 [root@slave2 ~]# jps 9647 Jps 解决方案 # 进入/tmp查看 [root@slave1 dfs]# cd /tmp [root@slave1 tmp]# ll 总用量 48 drwxr-xr-x. 2
报错1 hive&gt; show databases; OK Failed with exception java.io.IOException:java.lang.RuntimeException: Error in configuring object Time taken: 0.474 se
报错1 [root@localhost ~]# vim -bash: vim: 未找到命令 安装vim yum -y install vim* # 查看是否安装成功 [root@hadoop01 hadoop]# rpm -qa |grep vim vim-X11-7.4.629-8.el7_9.x
修改hadoop配置 vi /usr/local/software/hadoop-2.9.2/etc/hadoop/yarn-site.xml # 添加如下 &lt;configuration&gt; &lt;property&gt; &lt;name&gt;yarn.nodemanager.res