我的TDD实践:可测试性驱动开发上

TDD(测试驱动开发,Test Driven Development)是重要的敏捷实践之一,它的基本原理是用测试来带动开发,先写测试代码,再写开发代码,最后重构。许多TDD推广和实践者认为,这种方式易于带来高质量的代码。而如今,TDD也慢慢有了Test Driven Design,也就是测试驱动设计的意味。也就是说,它更像是一种设计方式了。这些理论我很愿意相信,也很支持,但是从实际角度来说,我还是较难接受正统的TDD行为。不过,我也在实际开发过程中总结出……怎么说呢,应该说是更适合我自己的实践方式,在此希望能和大家交流一下。

我难以接受正统TDD方式的原因,在于我总是过于习惯在拿到一个需求的时候,在脑海里率先出现设计。而正统TDD的要求应该是先从测试代码开始,但是我脑海中已经出现了设计“草图”之后,写出来的测试也已经有相当明确的“导向性”了——那么,即使我先写测试,又有什么意义呢?而且,我在写测试的时候,总是在想“哎,这个测试真多余,反正最终代码不会仅仅是这样的”。对于我来说,我只能采取正统TDD方式的“形”,而实在接受不了它的“神”。

至今我还在疑惑,因为我觉得普通开发人员像我这样情况其实应该也有不少,那么对于像我这样的人,又该如何采用TDD的方式来开发项目呢?最终我放弃了使用TDD,不过单元测试是一定保留了下来的。

于是,我还是先写代码,再写测试,用测试来检查代码的实现和“期望”是否相符。接着,为了提高项目测试的可测试性,我会不断重构代码,分离职责,构造一些功能明确的辅助类等等。慢慢的慢慢的,似乎我觉得最后得到的成果还是相当有模有样的。忽然有一天,我觉得自己的做法也已经形成了一些“套路”,我一时兴起在推特上“宣称”我在使用一种叫做“测试导向开发”的方式,因为我时刻考虑代码该如何测试,为此而不断改变我的设计。

测试导向开发,即Test Targeting Development或TTD。当然最后一个D改为Design似乎也没有什么问题。

与传统TDD的开发方式不同,我的TTD方式还是先写代码,后写测试。只不过,我会时刻关注自己的代码是否容易测试,并不断重构产品代码和测试代码。基本上它的步骤是:

  1. 写产品代码
  2. 为产品代码写测试
  3. 发现测试不容易写,于是重构产品代码
  4. 重构测试
  5. ……

一般来说,这几个步骤的执行顺序都比较随意,唯一的目的便是在产品开发过程中,让产品代码得到更多的测试覆盖率。这会迫使我们编写更加容易测试的代码,而我慢慢发现这个要求很接近于著名的SOLID原则

  • 单一职责原则(Single Resposibility Principle):如果一个类的职责不单一,我写单元测试的时候就要准备一个复杂的初始数据,然后劳心劳力地推测出它的输出是什么。此时,我会把一部分职责抽象成外部类,然后再某种方式交由原来的类使用。在单元测试的时候,我可以为新生成的外部类构造Stub,也可以为这个外部类做额外的单元测试。
  • 开/闭原则(Open/Close Principle):这个似乎和单元测试的关系不大,符合这个原则更多是为了更好的产品设计。当然,单元测试本身也需要产品提供一定的“开”点。
  • 里氏替换原则(Liskov Substitution Principle):这个……和单元测试关系不大。
  • 接口分离原则(Interface Segregation Principle):只有通过接口和具体实现类分离之后,才能在测试时为接口提供Mock或Stub。例如,把职责提取到外部类的时候,我会为外部类构建一个接口。而原来类要使用外部类的功能,便是通过接口来访问的。
  • 依赖倒转原则(Dependency Inversion Principle):这个就不用说了,大大简化了单元测试的编写难度。值得注意的是,依赖注入不等同于“依赖注入容器”的使用。例如,我会为待测试的类添加一个用于注入辅助对象的构造函数,然后在单元测试时传入辅助对象的Stub。这其实也就是“依赖注入”。

在推特上“发布”我的TTD之后,有朋友告诉我说其实这也是TDD啊:Testability Driven Development,可测试性驱动开发。哎,真神奇。在下一篇文章中,我会使用一个简单的示例来展示“可测试性驱动开发”的实践方式,也希望能够引起更多更广泛的探讨。

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


什么是设计模式一套被反复使用、多数人知晓的、经过分类编目的、代码 设计经验 的总结;使用设计模式是为了 可重用 代码、让代码 更容易 被他人理解、保证代码 可靠性;设计模式使代码编制  真正工程化;设计模式使软件工程的 基石脉络, 如同大厦的结构一样;并不直接用来完成代码的编写,而是 描述 在各种不同情况下,要怎么解决问题的一种方案;能使不稳定依赖于相对稳定、具体依赖于相对抽象,避免引
单一职责原则定义(Single Responsibility Principle,SRP)一个对象应该只包含 单一的职责,并且该职责被完整地封装在一个类中。Every  Object should have  a single responsibility, and that responsibility should be entirely encapsulated by t
动态代理和CGLib代理分不清吗,看看这篇文章,写的非常好,强烈推荐。原文截图*************************************************************************************************************************原文文本************
适配器模式将一个类的接口转换成客户期望的另一个接口,使得原本接口不兼容的类可以相互合作。
策略模式定义了一系列算法族,并封装在类中,它们之间可以互相替换,此模式让算法的变化独立于使用算法的客户。
设计模式讲的是如何编写可扩展、可维护、可读的高质量代码,它是针对软件开发中经常遇到的一些设计问题,总结出来的一套通用的解决方案。
模板方法模式在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中,使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。
迭代器模式提供了一种方法,用于遍历集合对象中的元素,而又不暴露其内部的细节。
外观模式又叫门面模式,它提供了一个统一的(高层)接口,用来访问子系统中的一群接口,使得子系统更容易使用。
单例模式(Singleton Design Pattern)保证一个类只能有一个实例,并提供一个全局访问点。
组合模式可以将对象组合成树形结构来表示“整体-部分”的层次结构,使得客户可以用一致的方式处理个别对象和对象组合。
装饰者模式能够更灵活的,动态的给对象添加其它功能,而不需要修改任何现有的底层代码。
观察者模式(Observer Design Pattern)定义了对象之间的一对多依赖,当对象状态改变的时候,所有依赖者都会自动收到通知。
代理模式为对象提供一个代理,来控制对该对象的访问。代理模式在不改变原始类代码的情况下,通过引入代理类来给原始类附加功能。
工厂模式(Factory Design Pattern)可细分为三种,分别是简单工厂,工厂方法和抽象工厂,它们都是为了更好的创建对象。
状态模式允许对象在内部状态改变时,改变它的行为,对象看起来好像改变了它的类。
命令模式将请求封装为对象,能够支持请求的排队执行、记录日志、撤销等功能。
备忘录模式(Memento Pattern)保存一个对象的某个状态,以便在适当的时候恢复对象。备忘录模式属于行为型模式。 基本介绍 **意图:**在不破坏封装性的前提下,捕获一个对象的内部状态,并在该
顾名思义,责任链模式(Chain of Responsibility Pattern)为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这种类型的设计模式属于行为
享元模式(Flyweight Pattern)(轻量级)(共享元素)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结