微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

Spark性能优化【OOM】

一.异常情况

  Spark on yarn模式下,当yarn为client的模式时没有OOM而cluster模式下出现OOM

二.异常分析

  由于client模型没有出现OOM而cluster模式出现OOM,那么出现OOM的原因必然是Driver引起的。Driver在client模式或cluster模型运行所占用的内存是一致的,Driver运行在JVM中,JVM会加载相关的配置参数等信息。不幸的是,在client模式下加载的本地JVM永久代【垃圾回收的某个阶段】配置信息【默认为128M】,而在cluster模式下默认该参数的大小为82M【暂时不确定,不过肯定比client模式小】。这就导致当业务代码逻辑很多的时候,就要构造很多永久代的对象,会占用大量内存,所以就会出现在client模式没有出现OOM而cluster模式出现OOM的情况,导致程序启动失败!

三.解决方案

  在spark代码中配置提交参数:spark.driver.extraJavaOptions -XX:PermSize=128M -XX:MaxPermSize=256M

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐