Swift3 GCD的基本用法一 - 任务和队列、服务优先级、信号量

本文代码:https://github.com/NinoWang/MultithreadingDemo/tree/master


多线程的知识,网上有无数文章来讲述,但真正理解起来还是有点绕的,还是要靠实践才能真正理解,本文以代码为主,少量叙述为辅和大家来捋一下。建议直接下载源码进行理解,不理解的地方在来文章里找答案。话少说,开捋。


基本概念

说到GCD,通常与相似功能的Operation Queue进行比较理解。

GCD是使用C语言构成的API,而Operation Queue是具体的Objc对象;GCD是使用block的形式管理队列中的任务,而Operation Queue是直接把队列和任务作为具体的对象进行操作。


任务和队列

任务分为同步任务(sync异步任务(async两种。

两者的区别在于,异步任务具备开辟新线程的能力,而同步任务不具备该能力。


队列是执行任务的容器,遵循先进先出(FIFO)的原则,GCD中队列分为串行队列(Serial Dispatch Queue并发队列(Concurrent Dispatch Queue两种。

两者的区别在于,并发队列可以同时执行多个任务(自动开启多个线程),而串行队列只能按顺序逐个执行任务。

另外还有两个特殊的子分类的队列:全局队列(global queue)和主队列(main queue)。

全局队列:并发队列的一种,用来执行较耗时的操作。

主队列:串行队列的一种,只能在主线程中进行,只有主线程空闲的时候才能被执行,用来刷新UI


可以说GCD中所有场景都是围绕两种任务和两种队列来实现的,不同任务和队列的排列组合:




并发队列异步任务

func conAsync() {
        let concurrentQueue = DispatchQueue(label: "Concurrent",attributes: .concurrent)
        for i in 0...10 {
            concurrentQueue.async {
                print("this is NO.\(i),current thread name is \(Thread.current)")
            }
        }
    }

结果为无序

串行队列异步任务

func serAsync() {
        let serialQueue = DispatchQueue(label: "Serial")
        for i in 0...10 {
            serialQueue.async {
                print("this is NO.\(i),current thread name is \(Thread.current)")
            }
        }
    }

结果为有序

主队列异步任务

func mainAsync() {
        let mainQueue = DispatchQueue.main
        for i in 0...10 {
            mainQueue.async {
                print("this is NO.\(i),current thread name is \(Thread.current)")
            }
        }
    }

结果为有序

全局队列异步任务

func globalAsync() {
        let globalQueue = DispatchQueue.global()
        for i in 0...10 {
            globalQueue.async {
                print("this is NO.\(i),current thread name is \(Thread.current)")
            }
        }
    }

结果为无序

并发队列同步任务

func conSync() {
        let concurrentQueue = DispatchQueue(label: "Concurrent",attributes: .concurrent)
        for i in 0...10 {
            concurrentQueue.sync {
                print("this is NO.\(i),current thread name is \(Thread.current)")
            }
        }
    }

结果为有序

串行队列同步任务

func serSync() {
        let serialQueue = DispatchQueue(label: "Serial")
        for i in 0...10 {
            serialQueue.sync {
                print("this is NO.\(i),current thread name is \(Thread.current)")
            }
        }
    }

结果为有序

主队列同步任务

func mainSync() {
        let mainQueue = DispatchQueue.main
        for i in 0...10 {
            mainQueue.sync {
                print("this is NO.\(i),current thread name is \(Thread.current)")
            }
        }
    }

死锁造成程序假死

全局队列同步任务

func globalSync() {
        let globalQueue = DispatchQueue.global()
        for i in 0...10 {
            globalQueue.sync {
                print("this is NO.\(i),current thread name is \(Thread.current)")
            }
        }
    }

结果为有序

线程间通讯-从子线回到主线程

iOS开发中,主线程主要用来处理UI层面的任务,诸如:点击、拖拽、滚动等。而比较耗时的任务则放到子线程中,诸如:数据请求、文件下载上传等。这个时候就需要使用到线程之间的通讯。

let globalQueue = DispatchQueue.global()
        
        globalQueue.async {
            if let url = URL.init(string: "https://placebeard.it/200/150") {
                do {
                    let imageData = try Data(contentsOf: url)
                    let image = UIImage(data: imageData)
                    
                    DispatchQueue.main.async {
                        self.imgView.image = image
                        self.imgView.sizeToFit()
                    }
                    
                } catch {
                    print(error)
                }
            }
            
        }

服务优先级(Qos)

这里的服务优先级决定了对一个任务分配资源的大小,并非绝对的执行顺序。swift3中Qos共有6个级别,优先级从高到低依次为userInteractive、userInitiated、default、utility、background、unspecified。

func QoS() {
        // 优先级从高到低 userInteractive、userInitiated、default、utility、background、unspecified
        // 指定Qos 这里分别用三种方式指定
        // 方式1
        let userInteractiveQueue = DispatchQueue(label: "userInteractive",qos: .userInteractive)
        let defaultQueue = DispatchQueue(label: "default",qos: .default)
        let conQueue = DispatchQueue(label: "con",attributes: .concurrent)
        for i in 0...5 {
            userInteractiveQueue.async {
                print("userInteractive ====> \(i)")
            }
            
            defaultQueue.async {
                print("defaultQueue ====> \(i)")
            }
            
            // 方式2
            DispatchQueue.global(qos: .unspecified).async {
                print("unspecified ====> \(i)")
            }
            DispatchQueue.global(qos: .userInitiated).async {
                print("userInitiated ====> \(i)")
            }
            
            // 方式3
            conQueue.async(qos: .utility) {
                print("utility ====> \(i)")
            }
            conQueue.async(qos: .background) {
                print("background ====> \(i)")
            }
        }
    }

信号量(semaphore)

先看下百度百科的描述信号量的例子:

以一个停车场的运作为例。简单起见,假设停车场只有三个车位,一开始三个车位都是空的。这时如果同时来了五辆车,看门人允许其中三辆直接进入,然后放下车拦,剩下的车则必须在入口等待,此后来的车也都不得不在入口处等待。这时,有一辆车离开停车场,看门人得知后,打开车拦,放入外面的一辆进去,如果又离开两辆,则又可以放入两辆,如此往复。

在这个停车场系统中,车位是公共资源,每辆车好比一个线程,看门人起的就是信号量的作用。

简单来说,信号量起到对多线程调用资源的监管作用。

DispatchSemaphore(value:):用于创建信号量,可以指定初始化信号量计数值,这里我们默认1

semaphore.wait():会判断信号量,如果为1,则往下执行。如果是0,则等待。

semaphore.signal():代表运行结束,信号量加1,有等待的任务这个时候才会继续执行。

func semaphore() {
        let semaphore = DispatchSemaphore(value: 1)
        for i in 0...10 {
            DispatchQueue.global().async {
                semaphore.wait()
                print("\(i)")
                
                semaphore.signal()
            }
        }
    }

续篇:Swift3 GCD的基本用法(二) - 队列的循环/挂起/恢复、其他常用方法

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


软件简介:蓝湖辅助工具,减少移动端开发中控件属性的复制和粘贴.待开发的功能:1.支持自动生成约束2.开发设置页面3.做一个浏览器插件,支持不需要下载整个工程,可即时操作当前蓝湖浏览页面4.支持Flutter语言模板生成5.支持更多平台,如Sketch等6.支持用户自定义语言模板
现实生活中,我们听到的声音都是时间连续的,我们称为这种信号叫模拟信号。模拟信号需要进行数字化以后才能在计算机中使用。目前我们在计算机上进行音频播放都需要依赖于音频文件。那么音频文件如何生成的呢?音频文件的生成过程是将声音信息采样、量化和编码产生的数字信号的过程,我们人耳所能听到的声音频率范围为(20Hz~20KHz),因此音频文件格式的最大带宽是20KHZ。根据奈奎斯特的理论,音频文件的采样率一般在40~50KHZ之间。奈奎斯特采样定律,又称香农采样定律。...............
前言最近在B站上看到一个漂亮的仙女姐姐跳舞视频,循环看了亿遍又亿遍,久久不能离开!看着小仙紫姐姐的蹦迪视频,除了一键三连还能做什么?突发奇想,能不能把舞蹈视频转成代码舞呢?说干就干,今天就手把手教大家如何把跳舞视频转成代码舞,跟着仙女姐姐一起蹦起来~视频来源:【紫颜】见过仙女蹦迪吗 【千盏】一、核心功能设计总体来说,我们需要分为以下几步完成:从B站上把小姐姐的视频下载下来对视频进行截取GIF,把截取的GIF通过ASCII Animator进行ASCII字符转换把转换的字符gif根据每
【Android App】实战项目之仿抖音的短视频分享App(附源码和演示视频 超详细必看)
前言这一篇博客应该是我花时间最多的一次了,从2022年1月底至2022年4月底。我已经将这篇博客的内容写为论文,上传至arxiv:https://arxiv.org/pdf/2204.10160.pdf欢迎大家指出我论文中的问题,特别是语法与用词问题在github上,我也上传了完整的项目:https://github.com/Whiffe/Custom-ava-dataset_Custom-Spatio-Temporally-Action-Video-Dataset关于自定义ava数据集,也是后台
因为我既对接过session、cookie,也对接过JWT,今年因为工作需要也对接了gtoken的2个版本,对这方面的理解还算深入。尤其是看到官方文档评论区又小伙伴表示看不懂,所以做了这期视频内容出来:视频在这里:本期内容对应B站的开源视频因为涉及的知识点比较多,视频内容比较长。如果你觉得看视频浪费时间,可以直接阅读源码:goframe v2版本集成gtokengoframe v1版本集成gtokengoframe v2版本集成jwtgoframe v2版本session登录官方调用示例文档jwt和sess
【Android App】实战项目之仿微信的私信和群聊App(附源码和演示视频 超详细必看)
用Android Studio的VideoView组件实现简单的本地视频播放器。本文将讲解如何使用Android视频播放器VideoView组件来播放本地视频和网络视频,实现起来还是比较简单的。VideoView组件的作用与ImageView类似,只是ImageView用于显示图片,VideoView用于播放视频。...
采用MATLAB对正弦信号,语音信号进行生成、采样和内插恢复,利用MATLAB工具箱对混杂噪声的音频信号进行滤波
随着移动互联网、云端存储等技术的快速发展,包含丰富信息的音频数据呈现几何级速率增长。这些海量数据在为人工分析带来困难的同时,也为音频认知、创新学习研究提供了数据基础。在本节中,我们通过构建生成模型来生成音频序列文件,从而进一步加深对序列数据处理问题的了解。
基于yolov5+deepsort+slowfast算法的视频实时行为检测。1. yolov5实现目标检测,确定目标坐标 2. deepsort实现目标跟踪,持续标注目标坐标 3. slowfast实现动作识别,并给出置信率 4. 用框持续框住目标,并将动作类别以及置信度显示在框上
数字电子钟设计本文主要完成数字电子钟的以下功能1、计时功能(24小时)2、秒表功能(一个按键实现开始暂停,另一个按键实现清零功能)3、闹钟功能(设置闹钟以及到时响10秒)4、校时功能5、其他功能(清零、加速、星期、八位数码管显示等)前排提示:前面几篇文章介绍过的内容就不详细介绍了,可以看我专栏的前几篇文章。PS.工程文件放在最后面总体设计本次设计主要是在前一篇文章 数字电子钟基本功能的实现 的基础上改编而成的,主要结构不变,分频器将50MHz分为较低的频率备用;dig_select
1.进入官网下载OBS stdioOpen Broadcaster Software | OBS (obsproject.com)2.下载一个插件,拓展OBS的虚拟摄像头功能链接:OBS 虚拟摄像头插件.zip_免费高速下载|百度网盘-分享无限制 (baidu.com)提取码:6656--来自百度网盘超级会员V1的分享**注意**该插件必须下载但OBS的根目录(应该是自动匹配了的)3.打开OBS,选中虚拟摄像头选择启用在底部添加一段视频录制选择下面,进行录制.
Meta公司在9月29日首次推出一款人工智能系统模型:Make-A-Video,可以从给定的文字提示生成短视频。基于**文本到图像生成技术的最新进展**,该技术旨在实现文本到视频的生成,可以仅用几个单词或几行文本生成异想天开、独一无二的视频,将无限的想象力带入生活
音频信号叠加噪声及滤波一、前言二、信号分析及加噪三、滤波去噪四、总结一、前言之前一直对硬件上的内容比较关注,但是可能是因为硬件方面的东西可能真的是比较杂,而且需要渗透的东西太多了,所以学习进展比较缓慢。因为也很少有单纯的硬件学习研究,总是会伴随着各种理论需要硬件做支撑,所以还是想要慢慢接触理论学习。但是之前总找不到切入点,不知道从哪里开始,就一直拖着。最近稍微接触了一点信号处理,就用这个当作切入点,开始接触理论学习。二、信号分析及加噪信号处理选用了matlab做工具,选了一个最简单的语音信号处理方
腾讯云 TRTC 实时音视频服务体验,从认识 TRTC 到 TRTC 的开发实践,Demo 演示& IM 服务搭建。
音乐音频分类技术能够基于音乐内容为音乐添加类别标签,在音乐资源的高效组织、检索和推荐等相关方面的研究和应用具有重要意义。传统的音乐分类方法大量使用了人工设计的声学特征,特征的设计需要音乐领域的知识,不同分类任务的特征往往并不通用。深度学习的出现给更好地解决音乐分类问题提供了新的思路,本文对基于深度学习的音乐音频分类方法进行了研究。首先将音乐的音频信号转换成声谱作为统一表示,避免了手工选取特征存在的问题,然后基于一维卷积构建了一种音乐分类模型。
C++知识精讲16 | 井字棋游戏(配资源+视频)【赋源码,双人对战】
本文主要讲解如何在Java中,使用FFmpeg进行视频的帧读取,并最终合并成Gif动态图。
在本篇博文中,我们谈及了 Swift 中 some、any 关键字以及主关联类型(primary associated types)的前世今生,并由浅及深用简明的示例向大家讲解了它们之间的奥秘玄机。