python – 多个gpus(1080Ti)不能加速tensorflow中的训练,测试cifar10_estimator代码

我试图在2或3个1080Ti上测试多GPU版本cifar10_estimator的性能,但没有收到加速.

我找到了一些有关硬件here的有用信息,但仍然困惑如何解决它.

我的环境:

> Ubuntu VERSION = 16.04.5 LTS(Xenial Xerus)
> Python3
> CUDA_VERSION = 9.0.176
> tensorflow-gpu = 1.11.0

GPU信息:

nvidia-smi topo -m

    GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    CPU Affinity
GPU0     X  PIX PHB PHB SYS SYS SYS SYS 0-7
GPU1    PIX  X  PHB PHB SYS SYS SYS SYS 0-7
GPU2    PHB PHB  X  PIX SYS SYS SYS SYS 0-7
GPU3    PHB PHB PIX  X  SYS SYS SYS SYS 0-7
GPU4    SYS SYS SYS SYS  X  PIX PHB PHB 8-15
GPU5    SYS SYS SYS SYS PIX  X  PHB PHB 8-15
GPU6    SYS SYS SYS SYS PHB PHB  X  PIX 8-15
GPU7    SYS SYS SYS SYS PHB PHB PIX  X  8-15

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe switches (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing a single PCIe switch
  NV#  = Connection traversing a bonded set of # NVLinks

1 gpu bach_size = 128

INFO:tensorflow:loss = 2.2576141, step = 200 (3.729 sec)
INFO:tensorflow:learning_rate = 0.1, loss = 2.2576141 (3.729 sec)
INFO:tensorflow:Average examples/sec: 2821.06 (2858.65), step = 200
INFO:tensorflow:Average examples/sec: 2847.23 (3496.06), step = 210
INFO:tensorflow:Average examples/sec: 2857.91 (3102.29), step = 220
INFO:tensorflow:Average examples/sec: 2867.04 (3083.62), step = 230
INFO:tensorflow:Average examples/sec: 2889.21 (3514.15), step = 240
INFO:tensorflow:Average examples/sec: 2913.15 (3636.28), step = 250
INFO:tensorflow:Average examples/sec: 2915.99 (2988.94), step = 260
INFO:tensorflow:Average examples/sec: 2901.94 (2578.95), step = 270
INFO:tensorflow:Average examples/sec: 2888.87 (2575.46), step = 280
INFO:tensorflow:Average examples/sec: 2892.13 (2986.66), step = 290
INFO:tensorflow:global_step/sec: 24.25

2 gpu bach_size = 256

INFO:tensorflow:loss = 2.4630964, step = 200 (5.971 sec)
INFO:tensorflow:learning_rate = 0.1, loss = 2.4630964 (5.971 sec)
INFO:tensorflow:Average examples/sec: 3255.68 (4296.71), step = 200
INFO:tensorflow:Average examples/sec: 3297.51 (4437.93), step = 210
INFO:tensorflow:Average examples/sec: 3332.15 (4275.33), step = 220
INFO:tensorflow:Average examples/sec: 3363.86 (4254.65), step = 230
INFO:tensorflow:Average examples/sec: 3395.09 (4316.94), step = 240
INFO:tensorflow:Average examples/sec: 3418.44 (4094.23), step = 250
INFO:tensorflow:Average examples/sec: 3447.17 (4364.24), step = 260
INFO:tensorflow:Average examples/sec: 3474.56 (4379.02), step = 270
INFO:tensorflow:Average examples/sec: 3492.73 (4067.13), step = 280
INFO:tensorflow:Average examples/sec: 3514.19 (4244.23), step = 290
INFO:tensorflow:global_step/sec: 16.6026

3 gpu bach_size = 384

INFO:tensorflow:loss = 2.0980535, step = 200 (9.329 sec)
INFO:tensorflow:learning_rate = 0.1, loss = 2.0980535 (9.329 sec)
INFO:tensorflow:Average examples/sec: 3214.65 (4165.7), step = 200
INFO:tensorflow:Average examples/sec: 3272.85 (5130.99), step = 210
INFO:tensorflow:Average examples/sec: 3324.15 (4955.13), step = 220
INFO:tensorflow:Average examples/sec: 3376.65 (5174.76), step = 230
INFO:tensorflow:Average examples/sec: 3425.48 (5132.15), step = 240
INFO:tensorflow:Average examples/sec: 3468.29 (4954.35), step = 250
INFO:tensorflow:Average examples/sec: 3509.91 (5014.23), step = 260
INFO:tensorflow:Average examples/sec: 3544.29 (4755.56), step = 270
INFO:tensorflow:Average examples/sec: 3579.69 (4901.39), step = 280
INFO:tensorflow:Average examples/sec: 3617.84 (5156.66), step = 290
INFO:tensorflow:global_step/sec: 13.1009

enter image description here

解决方法:

我想我现在可以回答我的问题.如果我想为多个gpus提供更高的性能,我应该查看https://github.com/tensorflow/benchmarks/.有关我在tf_cnn_benchmarks的测试结果,请参阅this issue.

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐