Linux模块机制浅析

Linux模块机制浅析

 

Linux允许用户通过插入模块,实现干预内核的目的。一直以来,对linux的模块机制都不够清晰,因此本文对内核模块的加载机制进行简单地分析。

模块的Hello World!

我们通过创建一个简单的模块进行测试。首先是源文件main.cMakefile

florian@florian-pc:~/module$ cat main.c

#include<linux/module.h>

#include<linux/init.h>

 

static int __init init(void)

{

    printk("Hi module!\n");

    return 0;

}

 

static void __exit exit(void)

{

    printk("Bye module!\n");

}

 

module_init(init);

module_exit(exit);

其中init为模块入口函数,在模块加载时被调用执行,exit为模块出口函数,在模块卸载被调用执行。

florian@florian-pc:~/module$ cat Makefile

obj-m += main.o

#generate the path

CURRENT_PATH:=$(shell pwd)

#the current kernel version number

LINUX_KERNEL:=$(shell uname -r)

#the absolute path

LINUX_KERNEL_PATH:=/usr/src/linux-headers-$(LINUX_KERNEL)

#complie object

all:

    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules

#clean

clean:

    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) clean

其中,obj-m指定了目标文件名称文件名需要和源文件名相同(扩展名除外),以便于make自动推导。

然后使用make命令编译模块,得到模块文件main.ko

florian@florian-pc:~/module$ make

make -C /usr/src/linux-headers-2.6.35-22-generic M=/home/florian/module modules

make[1]: 正在进入目录 `/usr/src/linux-headers-2.6.35-22-generic'

  Building modules, stage 2.

  MODPOST 1 modules

make[1]:正在离开目录 `/usr/src/linux-headers-2.6.35-22-generic'

使用insmodrmmod命令对模块进行加载和卸载操作,并使用dmesg打印内核日志。

florian@florian-pc:~/module$ sudo insmod main.ko;dmesg | tail -1

[31077.810049] Hi module!

 

florian@florian-pc:~/module$ sudo rmmod main.ko;dmesg | tail -1

[31078.960442] Bye module!

通过内核日志信息,可以看出模块的入口函数和出口函数都被正确调用执行。

模块文件

使用readelf命令查看一下模块文件main.ko的信息。

florian@florian-pc:~/module$ readelf -h main.ko

ELF Header:

  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

  Class:                             ELF32

  Data:                              2's complement, little endian

  Version:                           1 (current)

  OS/ABI:                            UNIX - System V

  ABI Version:                       0

  Type:                              REL (Relocatable file)

  Machine:                           Intel 80386

  Version:                           0x1

  Entry point address:               0x0

  Start of program headers:          0 (bytes into file)

  Start of section headers:          1120 (bytes into file)

  Flags:                             0x0

  Size of this header:               52 (bytes)

  Size of program headers:           0 (bytes)

  Number of program headers:         0

  Size of section headers:           40 (bytes)

  Number of section headers:         19

  Section header string table index: 16

我们发现main.ko文件类型为可重定位目标文件,这和一般的目标文件格式没有任何区别。我们知道,目标文件是不能直接执行的,它需要经过链接器的地址空间分配、符号解析和重定位的过程,转化为可执行文件才能执行。

那么,内核将main.ko加载后,是否对其进行了链接呢?

模块数据结构

首先,我们了解一下模块的内核数据结构。

linux3.5.2/kernel/module.h:220

struct module

{

    ……

    /* Startup function. */

    int (*init)(void);

    ……

    /* Destruction function. */

    void (*exit)(void);

    ……

};

模块数据结构的initexit函数指针记录了我们定义的模块入口函数和出口函数

模块加载

模块加载由内核的系统调用init_module完成。

linux3.5.2/kernel/module.c:3009

/* This is where the real work happens */

SYSCALL_DEFINE3(init_module, void __user *, umod,

       unsigned long, len, const char __user *, uargs)

{

    struct module *mod;

    int ret = 0;

    ……

    /* Do all the hard work */

    mod = load_module(umod, len, uargs);//模块加载

    ……

    /* Start the module */

    if (mod->init != NULL)

       ret = do_one_initcall(mod->init);//模块init函数调用

    ……

    return 0;

}

系统调用init_moduleSYSCALL_DEFINE3(init_module...)实现,其中有两个关键的函数调用load_module用于模块加载,do_one_initcall用于回调模块的init函数

函数load_module的实现为。

linux3.5.2/kernel/module.c:2864

/* Allocate and load the module: note that size of section 0 is always

   zero, and we rely on this for optional sections. */

static struct module *load_module(void __user *umod,

                unsigned long len,

                const char __user *uargs)

{

    struct load_info info = { NULL, };

    struct module *mod;

    long err;

    ……

    /* copy in the blobs from userspace, check they are vaguely sane. */

    err = copy_and_check(&info, umod, len, uargs);//拷贝到内核

    if (err)

       return ERR_PTR(err);

    /* figure out module layout, and allocate all the memory. */

    mod = layout_and_allocate(&info);//地址空间分配

    if (IS_ERR(mod)) {

       err = PTR_ERR(mod);

       goto free_copy;

    }

    ……

    /* Fix up syms, so that st_value is a pointer to location. */

    err = simplify_symbols(mod, &info);//符号解析

    if (err < 0)

       goto free_modinfo;

    err = apply_relocations(mod, &info);//重定位

    if (err < 0)

       goto free_modinfo;

    ……

}

函数load_module内有四个关键的函数调用copy_and_check将模块从用户空间拷贝到内核空间,layout_and_allocate为模块进行地址空间分配,simplify_symbols为模块进行符号解析,apply_relocations为模块进行重定位。

由此可见,模块加载时,内核为模块文件main.ko进行了链接的过程!

至于函数do_one_initcall的实现就比较简单了。

linux3.5.2/kernel/init.c:673

int __init_or_module do_one_initcall(initcall_t fn)

{

    int count = preempt_count();

    int ret;

    if (initcall_debug)

       ret = do_one_initcall_debug(fn);

    else

       ret = fn();//调用init module

    ……

    return ret;

}

调用了模块的入口函数init

模块卸载

模块卸载由内核的系统调用delete_module完成。

linux3.5.2/kernel/module.c:768

SYSCALL_DEFINE2(delete_module, const char __user *, name_user,

        unsigned int, flags)

{

    struct module *mod;

    char name[MODULE_NAME_LEN];

    int ret, forced = 0;

    ……

    /* Final destruction Now no one is using it. */

    if (mod->exit != NULL)

       mod->exit();//调用exit module

    ……

    free_module(mod);//卸载模块

    ……

}

通过回调exit完成模块的出口函数功能,最后调用free_module将模块卸载。

结论

如此看来,内核模块其实并不神秘。传统的用户程序需要编译为可执行程序才能执行,而模块程序只需要编译为目标文件的形式便可以加载到内核,有内核实现模块的链接,将之转化为可执行代码。同时,在内核加载和卸载的过程中,会通过函数调用户定义的模块入口函数和模块出口函数,实现相应的功能

参考资料

http://hi.baidu.com/20065562/item/15dcc4ce92c3d510b67a24af

http://blog.chinaunix.net/uid-26009923-id-3840337.html 

原文地址:https://www.cnblogs.com/fanzhidongyzby/p/3730131.html

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 dio@foxmail.com 举报,一经查实,本站将立刻删除。

相关推荐


在Linux上编写运行C语言程序,经常会遇到程序崩溃、卡死等异常的情况。程序崩溃时最常见的就是程序运行终止,报告 Segmentation fault (core dumped) 错误。而程序卡死一般来源于代码逻辑的缺陷,导致了死循环、死锁等问题。总的来看,常见的程序异常问题一般可以分为 非法内存访
git使用小结很多人可能和我一样,起初对git是一无所知的。我也是因为一次偶然的机会接触到git,并被它强大的功能所蛰伏。git其实就是一种版本控制工具,就像svn一样,但是git是分布式的。我不想给git打广告,我们直入正题——git能帮我们做什么?1)源码版本控制。平常写一写demo程序可能和g
1. 操作系统环境、安装包准备 宿主机:Max OSX 10.10.5 虚拟机:Parallel Desktop 10.1.1 虚拟机操作系统:CentOS 7 x86_64 DVD 1511.iso Oracle:linux.x64_11gR2_database_1of2.zip linux.x6
因为业务系统需求,需要对web服务作nginx代理,在不断的尝试过程中,简单总结了一下常见的nginx代理配置。 1. 最简反向代理配置 在http节点下,使用upstream配置服务地址,使用server的location配置代理映射。 upstream my_server { server 10
Linux模块机制浅析 Linux允许用户通过插入模块,实现干预内核的目的。一直以来,对linux的模块机制都不够清晰,因此本文对内核模块的加载机制进行简单地分析。 模块的Hello World! 我们通过创建一个简单的模块进行测试。首先是源文件main.c和Makefile。 f...
一、Hadoop HA的Web页面访问 Hadoop开启HA后,会同时存在两个Master组件提供服务,其中正在使用的组件称为Active,另一个作为备份称为Standby,例如HDFS的NameNode、YARN 的ResourceManager。HDFS的web页面只有通过Active的Name
一个简单的通用Makefile实现Makefile是Linux下程序开发的自动化编译工具,一个好的Makefile应该准确的识别编译目标与源文件的依赖关系,并且有着高效的编译效率,即每次重新make时只需要处理那些修改过的文件即可。Makefile拥有很多复杂的功能,这里不可能也没必要一一介绍,为了
Linux内核源码分析方法一、内核源码之我见Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次。如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径。我们都知道,想成为优秀的程序员,需要大量的实践和代码的编写。编程固然重要,但是往往
题记:自从接触到“跳板机”的概念后,一直就被烦不胜烦的机器名,ip地址,用户名,密码折腾的死去活来,心说能有个小精灵随时帮我输入那些重复的登录信息就好了。我见过最挫的方式就是用记事本把一堆机器的ip、登录用户、密码记录下来,每次登录机器就像是一场战斗:打开笔记本 勾选复制 写ssh命令 登录 再打开
统计一下你写过多少代码最近整理了一下自己从开始学习编程以来写过的程序和代码,林林总总,花了不少的时间,最后把一些自认为还算不错的代码提交到github上做一个简单的分类和备份。当然我并不奢求它们能成为多好的开源代码,只是希望通过这种方式分享自己的劳动成果罢了。如果大家有兴趣可以访问我的github,
一直以来被Linux的hostname和fqdn(Fully Qualified Domain Name)困惑了好久,今天专门抽时间把它们的使用细节弄清了。 一、设置hostname/fqdn&#xD;在Linux系统内设置hostname很简单,如: $ hostname florian 如果...
Linux的原子操作与同步机制 并发问题 现代操作系统支持多任务的并发,并发在提高计算资源利用率的同时也带来了资源竞争的问题。例如C语言语句“count++”在未经编译器优化时生成的汇编代码为。 当操作系统内存在多个进程同时执行这段代码时,就可能带来并发问题。 假设count变量初始值为0。进程1
最简git Server配置如何保持多台计算机的项目代码的同步更新呢?通过在一个公用计算机上开启git服务,任何能与该计算机互联的终端都可以同步最新的项目代码。每个终端所负责的就是下载代码更新,修改代码,提交代码更新,这些工作产生的变化能全部反应到git服务器上。同时,这么做也能避免使用github
建议收藏!!!Linux 服务器必备的安全设置~
QQ 用 Electron 重构后,终实现 Linux、macOS、Windows 三端架构统一!
Shell 分析日志文件高效命令,超级好用!
Linux下的Docker容器网络:如何设置容器间的网络连接和通信?
Linux 服务器必备的安全设置,建议收藏!!!
以为很熟悉 Linux,万万没想到在生产环境翻车了.....
Linux 或 Windows 上实现端口映射