微信公众号搜"智元新知"关注
微信扫一扫可直接关注哦!

pandas - 合并

学习目标

  • 应用pd.concat实现数据的合并
  • 应用pd.merge实现数据的合并

如果你的数据由多张表组成,那么有时候需要将不同的内容合并在一起分析

1 pd.concat实现数据合并

  • pd.concat([data1, data2], axis=1)
    • 按照行或列进行合并

比如我们将刚才处理好的哑变量与原数据合并

pd.concat([data, dummaries], axis=1)

2 pd.merge

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,left_index=False, right_index=False, sort=True,suffixes=('_x', '_y'), copy=True, indicator=False,validate=None)

  • 可以指定按照两组数据的共同键值对合并或者左右各自
  • left: A DataFrame object
  • right: Another DataFrame object
  • on: Columns (names) to join on. Must be found in both the left and right DataFrame objects.
  • left_on=None, right_on=None:指定左右键
Merge method sql Join Name Description
left LEFT OUTER JOIN Use keys from left frame only
right RIGHT OUTER JOIN Use keys from right frame only
outer FULL OUTER JOIN Use union of keys from both frames
inner INNER JOIN Use intersection of keys from both frames

3 案例:pd.merge合并

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                        'key2': ['K0', 'K1', 'K0', 'K1'],
                        'A': ['A0', 'A1', 'A2', 'A3'],
                        'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                        'key2': ['K0', 'K0', 'K0', 'K0'],
                        'C': ['C0', 'C1', 'C2', 'C3'],
                        'D': ['D0', 'D1', 'D2', 'D3']})

# 认内连接
result = pd.merge(left, right, on=['key1', 'key2'])

1、左连接

result = pd.merge(left, right, how='left', on=['key1', 'key2'])

2、右连接

result = pd.merge(left, right, how='right', on=['key1', 'key2'])

3、外链接

result = pd.merge(left, right, how='outer', on=['key1', 'key2'])

版权声明:本文内容由互联网用户自发贡献,该文观点与技术仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 [email protected] 举报,一经查实,本站将立刻删除。

相关推荐